International Macroeconomic Implications of Gradual Portfolio Adjustment

Philippe BacchettaUniversity of Lausanne
Swiss Finance Institute
CEPR

Eric van Wincoop University of Virginia NBER

January 2021

Motivation

- Modern international macro/finance models: Expected excess returns are small as portfolio positions are assumed to adjust immediately to shocks
 - May imply large portfolio changes
- Often directly assume Uncovered Interest rate Parity (UIP). Or linearization methods produce trivial portfolio decisions
- In these models financial shocks, e.g. exogenous portfolio shifts, have little impact
- Inconsistent with the data

Conflicting Evidence

- Expected excess returns can be large and vary over time
 - Both for short-term debt and equity
 - Even predictable, but sign of predictability changes with the horizon
 - Short-term returns on long-term bonds not predictable
- Capital flows do not react strongly to expected excess returns
 - Passive portfolio investors
 - Autocorrelated portfolio flows
 - Link between flows and lagged return
- Financial shocks affect capital flows and asset prices
 - Gabaix-Koijen (2020) (Inelastic market hypothesis)
 - Large-scale FX intervention

Recent Developments: Risk and Market Segmentation

- Gabaix-Maggiori (QJE 2015) propose a model where all transactions go through financial intermediaries
 - This increases the overall degree of risk aversion as intermediaries are risk averse and have large positions
 - This in turn can generate significant expected return differentials
- This can also be attained by increasing the level of risk, e.g. introducing disaster risk (e.g. Dou-Verdelhan, 2015)
- Various forms of segmentation
 - E.g., Greenwood, Hanson, Stein, Sunderam (2020), Gourinchas, Ray, Vayanos (2020)
- Role of financial shocks
 - UIP shocks (Kollman, 2002)
 - Itskhoki-Mukhin (2019)

Our Approach: Gradual or Infrequent Portfolio Adjustment

- Widespread evidence of limited or infrequent portfolio adjustment at the investor level
 - E.g. Giglio, Maggiori, Stroebel, and Utkus (2019) on US retail investors
- Huge volume in financial markets, but outstanding positions of frequent traders are not large
- ⇒ Frequent trading may not offset the impact of slow portfolio adjustments
 - Gradual portfolio adjustment implies smaller response of portfolios and thus larger movements in expected excess returns
 - No need to assume large risk aversion

Bacchetta-van Wincoop

- Is a form of endogenizing market segmentation
- Has a different dynamic impact, implying a lagged response of portfolios to shocks

January 2021

5/25

Our Recent Work

- We find that open economy models with infrequent portfolio adjustment can explain many stylized facts
- In Bacchetta and van Wincoop (AER 2010) we used this approach to explain the forward premium puzzle
 - Inspired by Froot and Thaler (1990) who suggested that the forward discount puzzle can be explained by delayed portfolio adjustment
- In several recent papers we analyze further implications of gradual international portfolio adjustment
- In this presentation I will
 - Explain the general approach
 - Mention some applications
 - Oescribe our empirical evidence

Modeling Gradual Portfolio Adjustment

- $lue{lue{0}}$ Investors adjust their portfolio every T period in a staggered way
 - 1/T investors adjust their portfolio in each period and there are T overlapping portfolios
 - Most papers in finance assume a fixed frequency of adjustment
- Constant probability p of adjusting portfolio
 - As in Calvo pricing
 - Portfolios depend on present value of returns with declining weight $\beta(1-p)$
- Ocst of adjusting portfolios
 - Either portfolio shares or portfolio values

Optimal Portfolios with Frequent Investors

- ullet Optimal portfolio share in Foreign equity by Home investors: z_t
- Excess return:

$$er_{t+1} = R_{F,t+1} - R_{H,t+1}$$

Frequent portfolio adjustment :

$$z_t = \frac{E_t e r_{t+1}}{\gamma \sigma^2} + \bar{z}_t$$

where \bar{z}_t is made of various elements (e.g., hedging terms) including portfolio shifts. Can represent **financial shocks**

- Assume only frequent investors, both Home and Foreign and consider market equilibrium
- Shocks to excess returns or financial shocks have very little impact on asset prices or exchange rate as $\gamma\sigma^2$ is small

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Optimal Portfolio with Costly Adjustment

Assume a quadratic cost of adjusting the portfolio:

$$0.5\psi\left(z_t-z_{t-1}\right)^2$$

Assume myopic (two-period OLG) investors. Optimal portfolio:

$$z_{t} = \frac{\psi}{\psi + \gamma \sigma^{2}} z_{t-1} + \frac{\gamma \sigma^{2}}{\psi + \gamma \sigma^{2}} z_{t}^{f}$$

- Weighted average of past portfolio and frequent portfolio
- Portfolio can be rewritten as:

$$z_t = \underbrace{\frac{\psi}{\psi + \gamma \sigma^2} z_{t-1}}_{\text{Portfolio persistence}} + \underbrace{\frac{1}{\psi + \gamma \sigma^2} E_t e r_{t+1}}_{\text{Return sensitivity}} + \tilde{z}_t$$

Bacchetta-van Wincoop Gradual Portfolio January 2021 9 / 25

Remarks on Optimal Portfolio with Costly Adjustment

- With infinite horizon, discounted future expected excess returns also matter.
 - ullet Discounting depends on ψ
- If we assume a probability p of changing the portfolio instead of an adjustment cost, we get a related portfolio demand with weight on past portfolio of 1-p
 - ullet Link between ψ and p: increasing ψ is similar to decreasing p
- If the adjustment is about portfolio values rather than portfolio shares, there is also a valuation effect
 - This can also be represented as a deviation from buy-and-hold portfolio

Implications of Portfolios with Costly Adjustment

- Assume all investors have costly adjustment and consider market equilibrium
- Shocks to expected excess returns or financial shocks generate a small portfolio response ⇒ larger excess return change is required
 - Similar to very large risk aversion, implies market segmentation
 - Explains excess return and large impact of flows (Gabaix-Koijen)
- If shock is persistent portfolio adjustment will continue in future periods ⇒ predictability
- If shock is not permanent, portfolio changes will be reversed and there will be a change in the sign of predictability
- Also explains delayed overshooting of asset price

(ロ) (回) (重) (重) (重) のQで

Applications

- Bacchetta and van Wincoop (2021), "Puzzling Exchange Rate Dynamics and Delayed Portfolio Adjustment"
- Simple model with myopic investors and adjustment cost
- Analytically tractable. Implies an AR(2) process for the exchange rate:

$$E_t q_{t+1} - \theta q_t + b \psi q_{t-1} + r_t^D = 0$$

where $\theta = 1 + \psi b + \gamma \sigma^2 b$ and r_t^D is return differential

 Can explain six puzzles of exchange rates including e.g. forward premium puzzle, delayed overshooting, predictability sign reversal, exchange rate forward puzzle, or lack of predictability for long-term bonds

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Applications

- 2. Bacchetta, van Wincoop, and Young (2020,) "Infrequent Random Portfolio Decisions in an Open Economy Model"
 - Two-country model with equity portfolio and returns. Assume a probability p of changing portfolios.
 - Solved with global methods
- Can match the behavior of equity returns and portfolios. Requires significant financial shocks

Empirical Evidence on Mutual Funds

- Bacchetta, Tièche, and van Wincoop (2020) "International Portfolio Choice with Frictions: Evidence from Mutual Funds"
- We analyze international equity positions of U.S. mutual fund from EPFR database
 - Mutual funds account for 60 percent of U.S. foreign equity holdings
- We use a simple model with portfolio frictions inspired by Gârleanu and Pedersen (2013), where funds maximize a mean-variance utility function with quadratic adjustment costs
- We first estimate expected return differentials
- We then turn to portfolio regressions with fund-level data

4□▶ 4₫▶ 4½▶ 4½▶ ½ ∽Q

Theoretical Framework

- Partial Equilibrium : Mutual funds behavior
- A fund can allocate its portfolio across two country assets with gross returns $R_{1,t+s}$ and $R_{2,t+s}$
- Represents allocation between country 1 and other countries
- z_t , $(1-z_t)$: Share invested in assets 1 and 2
- σ_1^2 , σ_2^2 : Variance returns of assets 1 and 2 (covariance σ_{12})

Bacchetta-van Wincoop

Portfolio Frictions

- Modeled by quadratic adjustment costs with two benchmarks:
- 1. Past portfolio: $0.5\psi_1(z_t-z_{t-1})^2$
- 2. Buy-and-hold portoflio: $0.5\psi_2(z_t-z_t^{bh})^2$
- Maximize the present value of future expected returns, penalized for risks and frictions:

$$\begin{split} &\sum_{s=0}^{\infty} \beta^{s} E_{t} \left(z_{t+s} R_{1,t+s+1} + (1-z_{t+s}) R_{2,t+s+1} \right) \\ &-0.5 \gamma \sum_{s=0}^{\infty} \beta^{s} \left(z_{t+s}^{2} \sigma_{1}^{2} + (1-z_{t+s})^{2} \sigma_{2}^{2} + 2 z_{t+s} (1-z_{t+s}) \sigma_{12} \right) \\ &-0.5 \sum_{s=0}^{\infty} \beta^{s} E_{t} \left(\psi_{1} (z_{t+s} - z_{t+s-1})^{2} + \psi_{2} (z_{t+s} - z_{t+s}^{bh})^{2} \right) \end{split}$$

4 D F 4 DF F 4 Z F 4 Z F Z F 9 Q G

Portfolio Regression

Optimal Portfolio

$$z_{t} = a_{1} + a_{2} \left(\frac{\psi_{1}}{\psi_{1} + \psi_{2}} z_{t-1} + \frac{\psi_{2}}{\psi_{1} + \psi_{2}} z_{t}^{bh} \right) + a_{3} \sum_{s=1}^{\infty} \delta^{s-1} E_{t} e r_{t+s}$$

• Consistent with the model, we consider the following regression:

$$z_{i,n,t} = b_{int} + b_1 \frac{z_{i,n,t-1} + z_{i,n,t}^{bh}}{2} + b_2 \left(z_{i,n,t-1} - z_{i,n,t}^{bh} \right) + b_3 E_t e r_{i,n,t,t+k}^{\delta} + \varepsilon_{i,n,t}$$

- Parameters can be linked to structural parameters
- Discounted expected excess returns are fund specific (weighted by fund share)

- 4 ロ b 4 個 b 4 恵 b 4 恵 b 9 Qで

17/25

Bacchetta-van Wincoop Gradual Portfolio January 2021

- Need to find a measure for $\sum_{s=1}^{\infty} \delta^{s-1} E_t e r_{t+s}$
- We construct $E_t e r_{i,n+t+k}^{\delta}$
 - Compute discounted present value of excess returns between US and other 35 countries, with discount rate δ and horizon k
 - 2 We show results for k = 24 and k = 60
 - δ has to be consistent with the estimated parameters: iterative procedure
 - **1** Linear panel regression of $er_{n,t,t+k}^{\delta}$ on momentum, dividend-price, and earning-price differentials. Compute country-level discounted expected excess return
 - For each fund, use country shares to compute fund-specific discounted relative returns

18 / 25

Regression Specification

Endogeneity issue:

- 1 Funds are very small and cannot influence equity returns
- 2 Country-level factors (e.g. aggregate portfolio shifts) could affect both portfolios and equity price. Can be captured by country-month fixed effect
 - This is possible because of fund-specific excess returns

- Also add fund-country fixed effect: captures differences in funds' style
- First assume same regression coefficients across funds. Then explore various forms of heterogeneity

Sample

- EPFR US-based equity funds with more than USD 5mio at the end of the sample and that report at least 12 months (316 funds)
- 35 investment countries. January 2002 July 2016
- At the fund level, we drop countries where investment < 2%. We only consider observations where fund i positively invests in country n both at time t and t-1
- Pooled regressions, 316'732 observations

Table: PORTFOLIO REGRESSIONS, BENCHMARK

		Fund-Level		
	(1)	(2)	(3)	(4)
$(z_{i,n,t-1} + z_{i,n,t}^{bh})/2$	0.928*** (0.004)	0.916*** (0.005)	0.918*** (0.007)	0.998*** (0.002)
$(z_{i,n,t-1}-z_{i,n,t}^{bh})$	0.173* (0.090)	0.313*** (0.069)	0.338*** (0.068)	-0.217*** (0.012)
$E_t er_{i,n,t,t+24}^{0.89}$	1.082*** (0.144)	2.324*** (0.291)		0.026** (0.012)
$E_t er_{i,n,t,t+60}^{0.89}$			5.054*** (0.825)	
Fund-Country FE	Yes	Yes	Yes	No ^a
Country-Month FE	No	Yes	Yes	No ^a
Observations R^2	316732 0.987	316732 0.988	196828 0.990	5918 0.999

(ロ) (個) (重) (重) (回) (の)

Main Lessons

- The model with frictions is fully consistent with the data
 - The two frictions have a significant impact
 - Portfolios react to expected return differentials
- The implied degree of risk aversion is around 2.5. Without frictions, it would be larger than 200
- Cost of frictions is small: 3 basis points in expected portfolio return
- Different results with aggregate data
- Impulse response from an increase in expected return differential

22 / 25

Figure 1 Impulse Response Portfolio Share to Expected Excess Return Shock

Heterogeneity

- We explore various forms of heterogeneity
- More sensitive to excess return for large country shares
- But large funds are less sensitive to excess returns
- Small, more active and emerging market funds give less weight to buy-and-hold portfolio (more rebalancing)

Conclusion

- The evidence on mutual funds is consistent with portfolio frictions
- Gradual portfolio adjustment has implication for the exchange rate, asset prices, and capital flows
- We currently investigate the implications in a more macro model (with M. Davenport). Look in particular at the impact of financial shocks on net capital flows
- Another interesting direction is the delayed impact of monetary policy on exchange rates and portfolio positions