Targeted Financial Conditions Indices and Growth-at-Risk

Fernando Eguren-Martin ¹ Sevim Kösem ^{2,3,4} Guido Maia ^{2,5} Andrej Sokol ⁶

> ¹SPX Capital ²Centre for Macroeconomics ³Bank of England ⁴Systemic Risk Centre ⁵London School of Economics ⁶Bloomberg LP

National Bank of Belgium Macroeconomic Seminar 6 June 2024

Disclaimer: the views expressed in this paper are those of the authors, and do not necessarily reflect those of the Bank of England, Bloomberg LP or SPX Capital.

Motivation

 Financial Conditions Indices (FCIs) are a popular monitoring and analytical tool

Motivation

- Financial Conditions Indices (FCIs) are a popular monitoring and analytical tool
- Recent applications to 'at-risk' modeling: tighter financial conditions associated with downside risks to activity, etc.

Motivation

- Financial Conditions Indices (FCIs) are a popular monitoring and analytical tool
- Recent applications to 'at-risk' modeling: tighter financial conditions associated with downside risks to activity, etc.
- Issue: FCIs typically designed to capture common variation in financial series (e.g. PCA), not tailored for specific applications (exceptions discussed below)

This Paper

Targeted Financial Conditions Indices (TFCIs). FCIs that are:

- Extracted from a large panel of financial time series
- Tailored to explain or forecast any part of the distribution of a variable of interest
- How: novel methodology based on rotation of PCA scores

This Paper

Targeted Financial Conditions Indices (TFCIs). FCIs that are:

- Extracted from a large panel of financial time series
- Tailored to explain or forecast any part of the distribution of a variable of interest
- How: novel methodology based on rotation of PCA scores

Application to US GDP-at-risk:

- Revisit Adrian et al. (2019); Adams et al. (2021) by extracting TFCIs from dataset underlying Chicago Fed's NFCI
- TFCI for US GDP downside risk 'nicer' in real time than NFCI/PCA; nuances between left tail and median TFCIs
- Better density forecasting performance than alternatives

 FCIs: Hatzius et al. (2010); Brave and Butters (2012); Kremer et al. (2012); Arregui et al. (2018); Arrigoni et al. (2022)

- FCIs: Hatzius et al. (2010); Brave and Butters (2012); Kremer et al. (2012); Arregui et al. (2018); Arrigoni et al. (2022)
- FCIs and tail risks: Adrian et al. (2019); Adams et al. (2021); Chari et al. (2020); Figueres and Jarociński (2020); Eguren-Martin et al. (2021); Eguren-Martin and Sokol (2022); Gelos et al. (2022); Amburgey and McCracken (2023); also, factor-augmented quantile regression (Ando and Tsay, 2011)

- FCIs: Hatzius et al. (2010); Brave and Butters (2012); Kremer et al. (2012); Arregui et al. (2018); Arrigoni et al. (2022)
- FCIs and tail risks: Adrian et al. (2019); Adams et al. (2021); Chari et al. (2020); Figueres and Jarociński (2020); Eguren-Martin et al. (2021); Eguren-Martin and Sokol (2022); Gelos et al. (2022); Amburgey and McCracken (2023); also, factor-augmented quantile regression (Ando and Tsay, 2011)

Similar to: Giglio et al. (2016) but works better!

- FCIs: Hatzius et al. (2010); Brave and Butters (2012); Kremer et al. (2012); Arregui et al. (2018); Arrigoni et al. (2022)
- FCIs and tail risks: Adrian et al. (2019); Adams et al. (2021); Chari et al. (2020); Figueres and Jarociński (2020); Eguren-Martin et al. (2021); Eguren-Martin and Sokol (2022); Gelos et al. (2022); Amburgey and McCracken (2023); also, factor-augmented quantile regression (Ando and Tsay, 2011)

Similar to: Giglio et al. (2016) but works better!

We are not: quantile factor models (Ando and Bai, 2020; Chen et al., 2021); QFAVAR (Korobilis and Schroeder, forthcoming); FCI-G (Ajello et al., 2023)

- FCIs: Hatzius et al. (2010); Brave and Butters (2012); Kremer et al. (2012); Arregui et al. (2018); Arrigoni et al. (2022)
- FCIs and tail risks: Adrian et al. (2019); Adams et al. (2021); Chari et al. (2020); Figueres and Jarociński (2020); Eguren-Martin et al. (2021); Eguren-Martin and Sokol (2022); Gelos et al. (2022); Amburgey and McCracken (2023); also, factor-augmented quantile regression (Ando and Tsay, 2011)
- Similar to: Giglio et al. (2016) but works better!
- We are not: quantile factor models (Ando and Bai, 2020; Chen et al., 2021); QFAVAR (Korobilis and Schroeder, forthcoming); FCI-G (Ajello et al., 2023)
- Maybe related: density forecast combination using weighted scoring rules (Opschoor et al., 2017)

Targeted Factor Extraction I

In words:

- Goal: extract one or more common factors from a panel of financial series subject to the restriction that factor(s) should maximize forecasting power for a given quantile and horizon of a (macro) target variable
- How it works: start from PCA scores, then rotate them based on a suitable loss function
- Application: new TFCIs from NFCI dataset, tailored to forecast US GDP growth distribution

Let \mathbb{Z} be a $T \times n$ panel of series that have mean zero and (for simplicity) unit variance, and \mathbb{F} be any factor decomposition of \mathbb{Z} , e.g. the full set of (standardised) PCA scores. Then

$$z_t = \Lambda f_t \tag{1}$$

A: $n \times n$ matrix of factor loadings

Let $G(\theta)$ be a $n \times n$ orthonormal matrix parametrised by the vector of angles θ . Then

$$z_{t} = \Lambda f_{t} = \Lambda G(\theta) G'(\theta) f_{t} \equiv \tilde{\Lambda}(\theta) \tilde{f}_{t}(\theta)$$
(2)

gives me another admissible factor decomposition

Targeted Factor Extraction IV

 $G(\theta)$ is the product of suitably chosen Givens matrices:

$$G\left(\theta\right) = \prod_{i=1}^{\min(s,n-1)} \prod_{j=i+1}^{r} G_{i,j}\left(\theta_{i,j}\right)$$
(3)

where the only non-zero elements of $G_{i,j}(\theta_{i,j})$ are $g_{kk} = 1$, $k \neq i, j$, $g_{kk} = \cos \theta_{i,j}$, k = i, j and $g_{ji} = -g_{ij} = -\sin \theta_{i,j}$. $r \leq n$: dimension of the column (sub-) space of Λ that is rotated by $G(\theta)$;

s < r: number of factors included in the regression models.

For us: s = 1, r picked dynamically from a grid in OOS exercise

Targeted Factor Extraction V

Example: n = 4, r = 3, s = 1

$$\mathsf{G}(\theta_1,\theta_2,\theta_3) = \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 & 0 & 0\\ -\sin\theta_1 & \cos\theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_2 & 0 & -\sin\theta_2 & 0\\ 0 & 1 & 0 & 0\\ -\sin\theta_2 & 0 & \cos\theta_2 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_3 & 0 & 0 & -\sin\theta_3\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ -\sin\theta_3 & 0 & 0 & \cos\theta_3 \end{bmatrix}$$

Targeted Factor Extraction VI

Conditional quantile function of variable y_{t+h} for quantile τ :

$$Q\left(y_{t+h}|w_{t}, \ \tilde{f}_{t}\left(\theta_{\tau}\right), \tau\right) = \alpha_{\tau}'w_{t} + \gamma_{\tau}'\left(\theta_{\tau}\right)s_{\tau}\tilde{f}_{t}\left(\theta_{\tau}\right)$$
$$= \begin{bmatrix} \alpha_{\tau}' & \gamma_{\tau}'\left(\theta_{\tau}\right) \end{bmatrix} \begin{bmatrix} w_{t} \\ s_{\tau}\tilde{f}_{t}\left(\theta_{\tau}\right) \end{bmatrix}$$
$$\equiv \beta_{\tau}'\left(\theta_{\tau}\right)x_{t}\left(\theta_{\tau}\right) \qquad (4)$$

 w_t : any variables not included in z_t , e.g. lagged values of y_t ; s_{τ} : $s \times n$ selection matrix (here s = 1, so just picks first column)

Targeted Factor Extraction VII

 $\hat{eta}_{ au}\left(heta_{ au}
ight)$ solves the quantile regression problem

$$\hat{\beta}_{\tau}(\theta_{\tau}) = \arg\min_{\beta_{\tau}(\theta_{\tau})} \frac{1}{T} \sum_{t=1}^{I} \rho_{\tau} \left(y_t - \beta_{\tau}'(\theta_{\tau}) x_t(\theta_{\tau}) \right)$$
(5)

 $\rho_{\tau}(u) = u(\tau - \mathbb{I}(u < 0))$: check function

Our object of interest is θ_{τ}^* , the set of angles, and therefore rotated factors $\tilde{f}_t(\theta_{\tau}^*)$, that, given a choice of r and s, maximises the fit of the model:

$$\theta_{\tau}^{*} = \arg\min_{\theta_{\tau}} \frac{1}{T} \sum_{t=1}^{T} \rho_{\tau} \left(y_{t} - \hat{\beta}_{\tau}^{\prime} \left(\theta_{\tau} \right) x_{t} \left(\theta_{\tau} \right) \right)$$
(6)

Solved numerically

To recap, for each horizon and quantile of interest, we have a fitted model of the following form:

$$\hat{Q}\left(\Delta g d p_{t+h,t} | x_t\left(\theta_{\tau}^*\right), \tau\right) = \beta_{\tau}'\left(\theta_{\tau}^*\right) \begin{bmatrix} 1\\ \Delta g d p_{t,t-h}\\ \tilde{f}_t\left(\theta_{\tau}^*\right) \end{bmatrix}$$
(7)

 Δgdp_{t+h} , t: cumulative GDP growth between t and t + h;

TFCIs and Growth-at-Risk I

Figure: Left tail TFCI and PCA index - 1 Year Ahead

Note: The figures plot the real-time (ex ante) time series of the a) Left Tail TFCI (5th Percentile) and b) PCA Index, when forecasting 1 year ahead. The indices comprise three subgroups: leverage (yellow), credit (red) and risk (blue). Both indices have been standardized.

TFCIs and Growth-at-Risk II

Note: Sample averages of real-time (ex ante) squared loadings for the PCA vs. Left Tail TFCI indices, when forecasting 1 year ahead. Each dot corresponds to one component series.

TFCIs and Growth-at-Risk III

Figure: Median TFCI - 1 Year Ahead

(a) Real-time median TFCI and contributions left

(b) Average real-time TFCI squared loadings, median vs. left tail

Note: Panel (a) shows the real-time Median TFCI time series and the contributions of each subgroup. Panel (b) compares the sample averages of real-time squared loadings of the Left Tail TFCI and the Median TFCI.

Forecast Evaluation

Recursive estimation on pseudo-real-time data:

- 1971Q1:2019Q4 data
 - include only financial variables that were available for at least 50% of the sample up until the forecast date
- 1999Q1:2019Q4 forecast evaluation sample
- Benchmarked against PCA, Giglio et al. (2016) (GKP), NFCI (real-time TBU)

Forecast Evaluation

Recursive estimation on pseudo-real-time data:

- 1971Q1:2019Q4 data
 - include only financial variables that were available for at least 50% of the sample up until the forecast date
- 1999Q1:2019Q4 forecast evaluation sample
- Benchmarked against PCA, Giglio et al. (2016) (GKP), NFCI (real-time TBU)

Evaluate local fit (mean tick loss), weighted probability scores (Gneiting and Ranjan, 2011), calibration (PITs):

- TFCIs invariably as good or better fit across the distribution
- Statistically significant improvements compared to all alternatives
- Better calibration

Forecast Evaluation Results I

Figure: TFCI Forecasts vs. Outturns

Note: Selected predictive quantiles based on TFCIs over time against outturns, a) 1 quarter and b) 1 year ahead. The QoQ growth rate is seasonally-adjusted and annualized.

Forecast Evaluation Results II

$$QS_{\tau,h} = \rho_{\tau} \left(y_{t_{\nu}+h} - \hat{P}_{\nu,h}^{-1}(\tau) \right)$$
(8)

The **quantile score** penalises outturns that are more extreme than the predictive quantile $\hat{P}_{v,h}^{-1}(\tau)$

Forecast Evaluation Results III

(a) 1 Quarter Ahead (b) 1 Year Ahead Note: Average quantile scores for all models, a) 1 quarter and b) 1 year ahead. Lower values represent better performance.

Forecast Evaluation Results IV

$$GR_{\tau,h} = \int_0^1 QS_{\tau,h} w(\tau) \, d\tau \tag{9}$$

where w are non-negative weight functions on the real line. Differences are testable within standard Diebold and Mariano (1995); Amisano and Giacomini (2007) framework.

Forecast Evaluation Results V

	1	1 Quarter Ahead				1 Year Ahead			
	TFCI	GKP	PCA	NFCI	TFCI	GKP	PCA	NFCI	
Uniform (w_0)	0.58	1.19	1.05	1.05	0.42	1.32	1.12	1.14	
Center (w_1)	0.11	1.20	1.05	1.04	0.08	1.33	1.11	1.15	
Tails (w_2)	0.13	1.16	1.05	1.06	0.10	1.29	1.16	1.12	
Right Tail (w_3)	0.18	1.16	1.06	1.05	0.13	1.23	1.11	1.10	
Left Tail (w_4)	0.18	1.21	1.04	1.05	0.13	1.40	1.15	1.17	

 Table 1 - Average GR Scores and GR Scores Ratios

Note: The table shows average Gneiting and Ranjan (2011) scores for our model (TFCI) and for different weighting functions: $w_0 = 1$; $w_1(\tau) = \tau(1-\tau)$; $w_2(\tau) = (2\tau-1)^2$; $w_3(\tau) = \tau^2$; $w_4(\tau) = (1-\tau)^2$. Scores for the remaining models are reported as ratios to the respective TFCI score. A ratio > 1 indicates that a model performs worse than the TFCI, and numbers in bold denote statistically significant differences at the 10% confidence level or better using the same testing strategy as Diebold and Mariano (1995), Amisano and Giacomini (2007).

Forecast Evaluation Results VI

$$PIT_{v,t+h} = \int_{-\infty}^{y_{t+h}} \hat{p}_{v,h}(x \mid y_t) dx \equiv \hat{P}_{v,h}(y_{t+h} \mid y_t)$$
(10)

where $\hat{p}_{\nu,h}(\cdot)$ is the PDF estimated in vintage ν for forecast horizon h, and $\hat{P}_{\nu,h}(\cdot)$ the corresponding CDF. Testing as in Rossi and Sekhposyan (2014)

Forecast Evaluation Results VII

Figure: Probability Integral Transforms (PITs)

(a) 1 Quarter Ahead

Note: The charts show the probability integral transforms (PITs) for each model and for both predictive horizons. The green band represents the 10% critical region, as in Rossi and Sekhposyan (2014). An ideally-calibrated model lies on the diagonal throughout the quantiles, so the closer to it, the better.

Conclusion

- Novel approach to extract factors from large data sets that maximize covariation with the quantiles of a target distribution of interest
- We build TFCIs for the quantiles of future US GDP growth from ChiFed's NFCI dataset
- Leverage indicators co-move more with median of predictive distribution, credit and risk more informative about downside risks
- Better density forecasting performance than alternatives

References I

- ADAMS, P. A., T. ADRIAN, N. BOYARCHENKO, AND D. GIANNONE (2021): "Forecasting macroeconomic risks," International Journal of Forecasting, 37, 1173–1191.
- ADRIAN, T., N. BOYARCHENKO, AND D. GIANNONE (2019): "Vulnerable Growth," American Economic Review, 109, 1263–1289.
- AMBURGEY, A. J. AND M. W. MCCRACKEN (2023): "On the real-time predictive content of financial condition indices for growth," Journal of Applied Econometrics, 38, 137–163.
- AMISANO, G. AND R. GIACOMINI (2007): "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, 25, 177–190.
- ANDO, T. AND J. BAI (2020): "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, 115, 266–279.
- ANDO, T. AND R. S. TSAY (2011): "Quantile regression models with factor-augmented predictors and information criterion," The Econometrics Journal, 14, 1–24.
- ARREGUI, N., S. ELEKDAG, R. G. GELOS, R. LAFARGUETTE, AND D. SENEVIRATEE (2018): "Can Countries Manage Their Financial Conditions Amid Globalization?" IMF Working Papers 18/15, International Monetary Fund.
- ARRIGONI, S., A. BOBASU, AND F. VENDITTI (2022): "Measuring Financial Conditions using Equal Weights Combination," *IMF Economic Review*, 70, 668–697.
- BRAVE, S. AND R. A. BUTTERS (2012): "Diagnosing the Financial System: Financial Conditions and Financial Stress," International Journal of Central Banking, 8, 191–239.
- CHARI, A., K. D. STEDMAN, AND C. LUNDBLAD (2020): "Capital Flows in Risky Times: Risk-on/Risk-off and Emerging Market Tail Risk," NBER Working Papers 27927, National Bureau of Economic Research, Inc.

CHEN, L., J. J. DOLADO, AND J. GONZALO (2021): "Quantile Factor Models," Econometrica, 89, 875-910.

- DIEBOLD, F. X. AND R. S. MARIANO (1995): "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, 13, 253–263.
- EGUREN-MARTIN, F., C. O'NEILL, A. SOKOL, AND L. V. D. BERGE (2021): "Capital flows-at-risk: push, pull and the role of policy," Working Paper Series 2538, European Central Bank.

References II

- EGUREN-MARTIN, F. AND A. SOKOL (2022): "Attention to the Tail(s): Global Financial Conditions and Exchange Rate Risks," *IMF Economic Review*, 70, 487–519.
- FIGUERES, J. M. AND M. JAROCIŃSKI (2020): "Vulnerable growth in the euro area: Measuring the financial conditions," *Economics Letters*, 191.
- GELOS, G., L. GORNICKA, R. KOEPKE, R. SAHAY, AND S. SGHERRI (2022): "Capital flows at risk: Taming the ebbs and flows," Journal of International Economics, 134.
- GIGLIO, S., B. KELLY, AND S. PRUITT (2016): "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, 119, 457–471.
- GNEITING, T. AND R. RANJAN (2011): "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, 29, 411–422.
- HATZIUS, J., P. HOOPER, F. S. MISHKIN, K. L. SCHOENHOLTZ, AND M. W. WATSON (2010): "Financial Conditions Indexes: A Fresh Look after the Financial Crisis," Tech. rep.
- KREMER, M., M. LO DUCA, AND D. HOLLÓ (2012): "CISS a composite indicator of systemic stress in the financial system," Working Paper Series 1426, European Central Bank.
- ROSSI, B. AND T. SEKHPOSYAN (2014): "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," *International Journal of Forecasting*, 30, 662 – 682.