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Guido Maia 2,5 Andrej Sokol 6

1SPX Capital
2Centre for Macroeconomics

3Bank of England
4Systemic Risk Centre

5London School of Economics
6Bloomberg LP

National Bank of Belgium Macroeconomic Seminar
6 June 2024

Disclaimer: the views expressed in this paper are those of the authors, and do not necessarily reflect those of the
Bank of England, Bloomberg LP or SPX Capital.



Motivation

I Financial Conditions Indices (FCIs) are a popular monitoring
and analytical tool

I Recent applications to ’at-risk’ modeling: tighter financial
conditions associated with downside risks to activity, etc.

I Issue: FCIs typically designed to capture common variation in
financial series (e.g. PCA), not tailored for specific
applications (exceptions discusssed below)
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This Paper

Targeted Financial Conditions Indices (TFCIs). FCIs that are:

I Extracted from a large panel of financial time series

I Tailored to explain or forecast any part of the distribution of a
variable of interest

I How: novel methodology based on rotation of PCA scores

Application to US GDP-at-risk:

I Revisit Adrian et al. (2019); Adams et al. (2021) by extracting
TFCIs from dataset underlying Chicago Fed’s NFCI

I TFCI for US GDP downside risk ’nicer’ in real time than
NFCI/PCA; nuances between left tail and median TFCIs

I Better density forecasting performance than alternatives
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Related Literature (highly selected)

I FCIs: Hatzius et al. (2010); Brave and Butters (2012);
Kremer et al. (2012); Arregui et al. (2018); Arrigoni et al.
(2022)

I FCIs and tail risks: Adrian et al. (2019); Adams et al.
(2021); Chari et al. (2020); Figueres and Jarociński (2020);
Eguren-Martin et al. (2021); Eguren-Martin and Sokol (2022);
Gelos et al. (2022); Amburgey and McCracken (2023); also,
factor-augmented quantile regression (Ando and Tsay, 2011)

I Similar to: Giglio et al. (2016) but works better!

I We are not: quantile factor models (Ando and Bai, 2020;
Chen et al., 2021); QFAVAR (Korobilis and Schroeder,
forthcoming); FCI-G (Ajello et al., 2023)

I Maybe related: density forecast combination using weighted
scoring rules (Opschoor et al., 2017)
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Targeted Factor Extraction I

In words:

I Goal: extract one or more common factors from a panel of
financial series subject to the restriction that factor(s) should
maximize forecasting power for a given quantile and horizon
of a (macro) target variable

I How it works: start from PCA scores, then rotate them
based on a suitable loss function

I Application: new TFCIs from NFCI dataset, tailored to
forecast US GDP growth distribution
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Targeted Factor Extraction II

Let Z be a T × n panel of series that have mean zero and (for
simplicity) unit variance, and F be any factor decomposition of Z,
e.g. the full set of (standardised) PCA scores. Then

zt = Λft (1)

Λ: n × n matrix of factor loadings
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Targeted Factor Extraction III

Let G (θ) be a n × n orthonormal matrix parametrised by the
vector of angles θ. Then

zt = Λft = ΛG (θ)G ′ (θ) ft ≡ Λ̃ (θ) f̃t (θ) (2)

gives me another admissible factor decomposition
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Targeted Factor Extraction IV

G (θ) is the product of suitably chosen Givens matrices:

G (θ) =

min(s,n−1)∏
i=1

r∏
j=i+1

Gi ,j (θi ,j) (3)

where the only non-zero elements of Gi ,j (θi ,j) are gkk = 1, k 6= i , j ,
gkk = cos θi ,j , k = i , j and gji = −gij = − sin θi ,j .
r ≤ n: dimension of the column (sub-) space of Λ that is rotated
by G (θ);
s < r : number of factors included in the regression models.
For us: s = 1, r picked dynamically from a grid in OOS exercise
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Targeted Factor Extraction V

Example: n = 4, r = 3, s = 1

G(θ1, θ2, θ3) =


cos θ1 − sin θ1 0 0
− sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1




cos θ2 0 − sin θ2 0
0 1 0 0

− sin θ2 0 cos θ2 0
0 0 0 1




cos θ3 0 0 − sin θ3

0 1 0 0
0 0 1 0

− sin θ3 0 0 cos θ3
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Targeted Factor Extraction VI

Conditional quantile function of variable yt+h for quantile τ :

Q
(
yt+h|wt , f̃t (θτ ) , τ

)
= α′τwt + γ′τ (θτ ) sτ f̃t (θτ )

=
[
α′τ γ′τ (θτ )

] [ wt

sτ f̃t (θτ )

]
≡ β′τ (θτ ) xt (θτ ) (4)

wt : any variables not included in zt , e.g. lagged values of yt ;
sτ : s × n selection matrix (here s = 1, so just picks first column)
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Targeted Factor Extraction VII

β̂τ (θτ ) solves the quantile regression problem

β̂τ (θτ ) = arg min
βτ (θτ )

1

T

T∑
t=1

ρτ
(
yt − β′τ (θτ ) xt (θτ )

)
(5)

ρτ (u) = u (τ − I (u < 0)): check function
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Targeted Factor Extraction VIII

Our object of interest is θ∗τ , the set of angles, and therefore rotated
factors f̃t (θ∗τ ), that, given a choice of r and s, maximises the fit of
the model:

θ∗τ = arg min
θτ

1

T

T∑
t=1

ρτ

(
yt − β̂′τ (θτ ) xt (θτ )

)
(6)

Solved numerically
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Targeted Factor Extraction IX

To recap, for each horizon and quantile of interest, we have a
fitted model of the following form:

Q̂ (∆gdpt+h,t |xt (θ∗τ ) , τ) = β′τ (θ∗τ )

 1
∆gdpt,t−h
f̃t (θ∗τ )

 (7)

∆gdpt+h, t: cumulative GDP growth between t and t + h;
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TFCIs and Growth-at-Risk I

Figure: Left tail TFCI and PCA index - 1 Year Ahead

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-2

-1

0

1

2

3

4

5

Leverage
Credit

Risk
Risk + Credit + Leverage (TFCI Left Tail)

(a) TFCI left tail index
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(b) PCA index

Note: The figures plot the real-time (ex ante) time series of the a) Left Tail
TFCI (5th Percentile) and b) PCA Index, when forecasting 1 year ahead. The

indices comprise three subgroups: leverage (yellow), credit (red) and risk
(blue). Both indices have been standardized.
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TFCIs and Growth-at-Risk II

Figure: Average Real-Time Squared Loadings, 1 Year Ahead
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Note: Sample averages of real-time (ex ante) squared loadings for the PCA vs.
Left Tail TFCI indices, when forecasting 1 year ahead. Each dot corresponds to

one component series.
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TFCIs and Growth-at-Risk III

Figure: Median TFCI - 1 Year Ahead
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(a) Real-time median TFCI and contributions
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(b) Average real-time TFCI squared loadings, median vs.
left tail

Note: Panel (a) shows the real-time Median TFCI time series and the
contributions of each subgroup. Panel (b) compares the sample averages of

real-time squared loadings of the Left Tail TFCI and the Median TFCI.
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Forecast Evaluation

Recursive estimation on pseudo-real-time data:
I 1971Q1:2019Q4 data

I include only financial variables that were available for at least
50% of the sample up until the forecast date

I 1999Q1:2019Q4 forecast evaluation sample

I Benchmarked against PCA, Giglio et al. (2016) (GKP), NFCI
(real-time TBU)

Evaluate local fit (mean tick loss), weighted probability scores
(Gneiting and Ranjan, 2011), calibration (PITs):

I TFCIs invariably as good or better fit across the distribution

I Statistically significant improvements compared to all
alternatives

I Better calibration
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Forecast Evaluation Results I

Figure: TFCI Forecasts vs. Outturns
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(a) 1 quarter ahead
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(b) 1 year ahead

Note: Selected predictive quantiles based on TFCIs over time against outturns,
a) 1 quarter and b) 1 year ahead. The QoQ growth rate is seasonally-adjusted

and annualized.
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Forecast Evaluation Results II

QSτ,h = ρτ

(
ytv+h − P̂−1

v ,h(τ)
)

(8)

The quantile score penalises outturns that are more extreme than
the predictive quantile P̂−1

v ,h(τ)
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Forecast Evaluation Results III

Figure: Average Quantile Scores
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(a) 1 Quarter Ahead

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quantile

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q
ua

nt
ile

 S
co

re

CFNFCI
GKP

PCA
TFCI

(b) 1 Year Ahead

Note: Average quantile scores for all models, a) 1 quarter and b) 1 year
ahead. Lower values represent better performance.
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Forecast Evaluation Results IV

GRτ,h =

∫ 1

0
QSτ,hw (τ) dτ (9)

where w are non-negative weight functions on the real line.
Differences are testable within standard Diebold and Mariano
(1995); Amisano and Giacomini (2007) framework.
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Forecast Evaluation Results V
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Forecast Evaluation Results VI

PITv ,t+h =

∫ yt+h

−∞
p̂v ,h(x | yt)dx ≡ P̂v ,h(yt+h | yt) (10)

where p̂v ,h(·) is the PDF estimated in vintage v for forecast

horizon h, and P̂v ,h(·) the corresponding CDF. Testing as in Rossi
and Sekhposyan (2014)
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Forecast Evaluation Results VII

Figure: Probability Integral Transforms (PITs)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quantile

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TFCI
GKP

PCA
CFNFCI

5% Critical Value

(a) 1 Quarter Ahead

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quantile

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TFCI
GKP

PCA
CFNFCI

5% Critical Value

(b) 1 Year Ahead

Note: The charts show the probability integral transforms (PITs) for each
model and for both predictive horizons. The green band represents the 10%

critical region, as in Rossi and Sekhposyan (2014). An ideally-calibrated model
lies on the diagonal throughout the quantiles, so the closer to it, the better.
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Conclusion

I Novel approach to extract factors from large data sets that
maximize covariation with the quantiles of a target
distribution of interest

I We build TFCIs for the quantiles of future US GDP growth
from ChiFed’s NFCI dataset

I Leverage indicators co-move more with median of predictive
distribution, credit and risk more informative about downside
risks

I Better density forecasting performance than alternatives

25 / 27



References I
Adams, P. A., T. Adrian, N. Boyarchenko, and D. Giannone (2021): “Forecasting macroeconomic risks,”

International Journal of Forecasting, 37, 1173–1191.

Adrian, T., N. Boyarchenko, and D. Giannone (2019): “Vulnerable Growth,” American Economic Review,
109, 1263–1289.

Amburgey, A. J. and M. W. McCracken (2023): “On the real-time predictive content of financial condition
indices for growth,” Journal of Applied Econometrics, 38, 137–163.

Amisano, G. and R. Giacomini (2007): “Comparing Density Forecasts via Weighted Likelihood Ratio Tests,”
Journal of Business & Economic Statistics, 25, 177–190.

Ando, T. and J. Bai (2020): “Quantile Co-Movement in Financial Markets: A Panel Quantile Model With
Unobserved Heterogeneity,” Journal of the American Statistical Association, 115, 266–279.

Ando, T. and R. S. Tsay (2011): “Quantile regression models with factor-augmented predictors and information
criterion,” The Econometrics Journal, 14, 1–24.

Arregui, N., S. Elekdag, R. G. Gelos, R. Lafarguette, and D. Seneviratne (2018): “Can Countries
Manage Their Financial Conditions Amid Globalization?” IMF Working Papers 18/15, International Monetary
Fund.

Arrigoni, S., A. Bobasu, and F. Venditti (2022): “Measuring Financial Conditions using Equal Weights
Combination,” IMF Economic Review, 70, 668–697.

Brave, S. and R. A. Butters (2012): “Diagnosing the Financial System: Financial Conditions and Financial
Stress,” International Journal of Central Banking, 8, 191–239.

Chari, A., K. D. Stedman, and C. Lundblad (2020): “Capital Flows in Risky Times: Risk-on/Risk-off and
Emerging Market Tail Risk,” NBER Working Papers 27927, National Bureau of Economic Research, Inc.

Chen, L., J. J. Dolado, and J. Gonzalo (2021): “Quantile Factor Models,” Econometrica, 89, 875–910.

Diebold, F. X. and R. S. Mariano (1995): “Comparing Predictive Accuracy,” Journal of Business & Economic
Statistics, 13, 253–263.

Eguren-Martin, F., C. O’Neill, A. Sokol, and L. v. d. Berge (2021): “Capital flows-at-risk: push, pull and
the role of policy,” Working Paper Series 2538, European Central Bank.

26 / 27



References II

Eguren-Martin, F. and A. Sokol (2022): “Attention to the Tail(s): Global Financial Conditions and Exchange
Rate Risks,” IMF Economic Review, 70, 487–519.
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