Tariff Passthrough at the Border and at the Store: Evidence from US Trade Policy

Alberto Cavallo

Harvard University

Gita Gopinath

Harvard & IMF

Brent Neiman

U. of Chicago

Jenny Tang

Fed Boston

Presentation by Alberto Cavallo Central Bank of Belgium October 2019

The US-China Trade War Timeline (2018 - May 2019)

Exhibit 11 2018 U.S. Tariffs and Retaliations

DATE	U.S.	CHINA	OTHER COUNTRIES
January - March 2018	Safeguard tariffs • Solar Panels (+30%, \$8.5 bn) • Washing Machines (+20% to +50%, \$1.8 bn)	Files WTO dispute	South Korea files WTO dispute
March – April 2018	National Security Tariffs • Steel (+25%, \$10.2 bn) • Aluminum (+10%, \$ 7.7 bn)		+10% to +25% on \$3 to
July 2018	China Tariffs – Stage 1 • +25% on \$34 bn	Retaliation • +25% on \$34 bn	
August 2018	China Tariffs – Stage 2 • +25% on \$16 bn	Retaliation +25% on \$16 bn	
September 2018	China Tariffs – Stage 3 • +10% on \$200 bn	Retaliation +10% on \$60 bn	
	½ are intermediate goods,¼ are consumer goods.		
December 2018	US and China agree to potariff increases while they		USMCA (new NAFTA) deal signed
May 2019	Stage 3 tariffs increased to +25%	Stage 3 tariffs increased to +25%	

Source: Casewriter, based on Bown, Chad, and Melina Kolb. 2018. "Trump's Trade War Timeline: An Up-to-Date Guide." https://piie.com/blogs/trade-investment-policy-watch/trump-trade-war-china-date-guide.

What we do

- Measure the impact of tariffs on US prices
- At the Dock
 - Chinese tariffs
 - Steel tariffs
 - Retaliation tariffs on US exports
- At the Store
 - Case studies (washing machines, handbags, refrigerators, tires, bikes, sneakers) using data from largest US retailers
 - Retail data with country of origin (COO) and HS details from 2 large retailers

Summary of Findings

- Tariff burden falls mostly on the US
 - Full import tariff passthrough
 - Chinese exporters are <u>not</u> reducing their prices à US importers bear the full cost of the tariff
 - Tariff passthrough much greater than exchange rate passthrough
 a so RMB depreciation is not helping much
 - US exporters are reducing prices à undifferentiated products
- Partial response at the retail level
 - Some goods prices increased, others did not
 - Importer/retailers reducing markups
 - Similar effects for affected and not-affected categories
 - spreading the cost or indirect effect of tariffs
 - Significant front-loading and little trade diversion

Data Sources

- BLS International Price Program (IPP)
 - Survey of transactional prices for imported goods, 2005-2019
 - Access to micro data used to construct the US Import/Export price indices
 - Not affected by unit-value problems in Census data (no compositional differences over time)
- The Billion Prices Project
 - Daily data collected from websites of largest multi-channel retailers in the US (this paper: from 2017 to 2019)
 - For 2 retailers we further obtain country of origin and HS code classifications for each individual product

At the Border Chinese Tariffs

Figure 1: Import Price Indices, by China Tariff Wave

 Affected goods from China à immediate jump in post-tariffs prices (i.e. no reduction in the Chine exporter s prices)

Frequency Of Price Changes

 No wait-and-see à Tariffs have not changed the frequency of import price changes

Figure 2: Frequency of Monthly Price Changes (Averaged to Quarter)

Passthrough Regression

Standard passthrough regression with distributed lags

$$\Delta \ln \left(P_{i,j,k,t}^{\mathcal{I}} \right) = \delta_k^{\mathcal{I}} + \phi_{\text{CN}}^{\mathcal{I},\Omega} + \phi_{\text{CN}}^{\mathcal{I},-\Omega} + \sum_{l=0}^{11} \gamma_{\text{CN},l}^{\mathcal{I}} \Delta \tau_{\text{CN},k,t-l}$$

$$+ \sum_{l=0}^{11} \beta_l^{\mathcal{I},S} \Delta \ln \left(S_{j,t-l} \right) + \sum_{l=0}^{11} \beta_l^{\mathcal{I},X} \Delta \ln \left(X_{j,t-l} \right) + \epsilon_{i,j,k,t},$$
(2)

- Notation
 - i is the item
 - j is country of origin
 - k is the sector (between HS4 and HS6)
- ullet δ_k captures an average sectoral inflation rate
- ϕ_{CN}^{Ω} and $\phi_{CN}^{-\Omega}$ capture constant deviations from sectoral trend for Chinese goods affected and unaffected by the tariffs
- $\Delta \tau_{CN,k,t}$ measures the log additional tariff rate (multiple lags)
- S_i is the value of j s currency in USD
- X is the country of origin s PPI

Passthrough Regression

		(1)	(2)	(3)	(4)
Tariffs 1 yr.	$\left(\sum_{l=0}^{11} \gamma_{\mathrm{CN},l}^{\mathcal{I}}\right)$	-0.079***	-0.076***		-0.018
	(2000 1011,0)	(0.026)	(0.028)		(0.030)
ERPT 1 yr.	$\left(\sum_{l=0}^{11} \beta_l^{\mathcal{I},S}\right)$			0.219***	0.221***
	(———)			(0.027)	(0.027)
PPI PT 1 yr.	$\left(\sum_{l=0}^{11} \beta_l^{\mathcal{I},X}\right)$			0.019	0.012
	(====)			(0.070)	(0.073)
China	$\left(\phi_{\mathrm{CN}}^{\mathcal{I},\Omega}\right)$		0.000		-0.000
Affected	()		(0.000)		(0.000)
China	$\left(\phi_{\mathrm{CN}}^{\mathcal{I},-\Omega}\right)$		-0.000		-0.001
Not-Affected	(, or,)		(0.001)		(0.001)
	Adj. R^2	0.000	0.003	0.004	0.004
	Obs. Sector FEs?	820,318 No	820,318 Yes	820,318 Yes	820,318 Yes

Notes: Robust standard errors in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 percent level.

Table 1: Regression Analysis of Chinese Import Tariffs, Monthly Data

- A 20% tariff is associated with a 1.6% lower ex-tariff price and a 18.4% higher overall price faced by the importer
- Tariff passthrough is much higher than for an equivalent exchange rate shock
 - The RMB has depreciated about 10%, which lower prices faced by importers by 2.2%

At the Border Steel Imports

 Results are similar for the steel tariffs (March 2018, affecting multiple countries)

Figure 3: Steel Import Price Indices, by Tariff Wave

• Opposite results for exports à US prices fell about 7%

Figure 12: US Export Price Indicies, Affected vs. Not Affected Countries and Goods

$$\Delta \ln \left(P_{i,j,k,t}^{\mathcal{E}} \right) = \delta_k^{\mathcal{E}} + \sum_{l=0}^{11} \gamma_l^{\mathcal{E}} \Delta \tau_{k,t-l} + \sum_{l=0}^{11} \beta_l^{\mathcal{E},S} \Delta \ln \left(S_{j,t-l} \right) + \sum_{l=0}^{11} \beta_l^{\mathcal{E},X} \Delta \ln \left(X_{j,t-l} \right) + \epsilon_{i,j,k,t}(5)$$

		(1)	(2)	(3)	(4)	(5)
Tariffs 1 yr.	$\left(\sum_{l=0}^{11} \gamma_l^{\mathcal{E}}\right)$	-0.541*** (0.107)	-0.525*** (0.111)		-0.481*** (0.111)	
China Tariffs 1 yr.	$\left(\sum_{l=0}^{11} \gamma_l^{\mathcal{E}, \text{CN}}\right)$					-0.628*** (0.152)
Non-China Tariffs 1 yr.	$\left(\sum_{l=0}^{11} \gamma_l^{\mathcal{E},-\text{CN}}\right)$					0.064 (0.115)
ERPT 1 yr.	$\left(\sum_{l=0}^{11} \beta_l^{\mathcal{E},S}\right)$			0.188*** (0.018)	0.187*** (0.018)	0.187*** (0.018)
PPI PT 1 yr.	$\left(\sum_{l=0}^{11} \beta_l^{\mathcal{E},X}\right)$			0.239*** (0.040)	0.238*** (0.040)	0.235*** (0.039)
	Adj. R^2 Obs. Sector FEs?	0.000 433,664 No	0.001 433,664 Yes	0.002 433,664 Yes	0.002 433,664 Yes	0.002 433,664 Yes

Notes: Robust standard errors in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 percent level.

Table 5: Regression Analysis of Retaliatory Export Tariffs, Monthly Data

ullet A 20% tariff increase associated with a 10.8 % decrease in export prices

 The type of goods matters à undifferentiated and agricultural products explain the decline in US export prices

Figure 13: Decomposition US Export Price Indices

• US soybean prices immediately fell by 25% relative to Brazil/Argentina (this graph is not in paper)

Exhibit 12 Soybean Prices, U.S.A., Brazil, and Argentina (FOB)

Source: Novitas SA (http://www.novitas.com.ar/), based on data from Thompson Reuters.

At the **Store** (Retail)

- We start with some case studies of goods that are often cited in the US media à easy to identify, mostly coming from China
- Advantage vs CPI: more disaggregated, daily data, with brands and other product characteristics

Washing Machines

• 20% tariff in January 2018

Figure 4: Retail Washing Machine Prices, BPP and CPI

Washing Machines

Huge heterogeneity across brands

(a) Price Indices

Washing Machines

- US and imported brands had similar inflation dynamics
 - Side-effect of steel imports? (hard to reconcile magnitudes)
 - Higher margins for US brands?

Other products (3rd round of Chinese tariffs)

Figure 6: Retail Prices, BPP, Multiple Affected Goods

- Handbags and tires are showing more inflation
- Not much impact for refrigerator and bicycles

Country of Origin and HS codes

- Caveats:
 - not clear if US brand is domestically produced
 - not clear if all bicycles or refrigerators are affected
 - we want to compare inflation relative to unaffected categories
- We focus on a subset of data with country of origin (COO) and HS code information for each individual good
 - Retailer 1
 - COO scraped,
 - HS code by 3CE (specialized firm) based on product description
 - Retailer 2 directly imports a large share of its foreign goods
 - COO provided by the firm.
 - Some HS codes provided by retailer (direct imports) and some classified by 3CE

Obtaining product level HS codes

Retail data with COO and HS information

	Retailer 1 and 2	Retailer 1 Only	Retailer 2 Only	Imported Products	Household Products	Electronics Products
Products	92,624	37,840	54,784	59,978	64,421	10.891
Exporting Countries	82	65	66	81	72	43
HS6 Categories	1,991	1,651	831	1,498	1,406	781
Products Imported	59,978	21,144	38,834	59,978	46,836	6,679
Products Imported from China	43,490	13,646	29,844	43,490	35,748	3,566
Products in Affected Categories	59,460	23,219	36,241	40,333	43,505	6,269
Products from China & Affected	30,101	8,757	21,344	30,101	25,212	1,954
Panel B: Pricing Behavior						
Products Without Price Changes (%)	42	49	37	47	43	43
Mean Product Life (months)	18	16	19	18 18	15	
Abs. Val. Price Changes (med., %)	11.1	14.3	10.0	11.4	10.8	11.9
Abs. Val. Price Changes, Ex-Sales (med., %)	9.9	11.4	8.9	10.0	9.7	10.0
Implied Duration (med., months)	8.9	9.7	8.5	9.7	8.5	6.9
Implied Duration, Ex-Sales (med., months)	10.5	12.7	9.5	11.2	11.1	8.4

Table 3: Summary Statistics from Two Retailers

Price Indices

Figure 7: Retail Price Response to China Tariffs, Two Retailers

- All groups have more inflation since the tariffs (about 2-3%)
- But no difference between groups!

Retailer comparison

Passthrough Regression

Same passthrough regression without exchange rate and PPI

$$\Delta \ln \left(P_{i,j,k,t}^{\mathcal{R}} \right) = \delta_k^{\mathcal{R}} + \phi_{\text{CN}}^{\mathcal{R},\Omega} + \phi_{\text{CN}}^{\mathcal{R},-\Omega} + \sum_{l=0}^{9} \gamma_{\text{CN},l}^{\mathcal{R}} \Delta \tau_{\text{CN},k,t-l} + \epsilon_{i,j,k,t}, \tag{4}$$

- Notation
 - i is the item
 - j is country of origin
 - k is the sector (between HS4 and HS6)
- ullet δ_k captures an average sectoral inflation rate
- ϕ_{CN}^{Ω} and $\phi_{CN}^{-\Omega}$ capture deviations from sectoral trends for Chinese goods affected and unaffected by the tariffs
- $\Delta \tau_{CN,k,t}$ measures the log additional tariff rate (multiple lags)

Retail Passthrough

		Retailers 1 and 2	Retailer 1 Only	Retailer 2 Only	Imported Products	Household Products	Electronics Products
Tariffs 1 yr.	$\left(\sum_{l=0}^{11} \gamma_{\mathrm{CN},l}^{\mathcal{R}}\right)$	0.044*** (0.009)	0.049*** (0.013)	0.046*** (0.011)	0.046*** (0.009)	0.045*** (0.010)	0.070*** (0.025)
China Affected	$\phi_{\mathrm{CN}}^{\mathcal{R},\Omega}$	-0.001* (0.000)	-0.000 (0.000)	-0.001 (0.001)	-0.000 (0.001)	-0.001** (0.000)	-0.001 (0.001)
China Not Affected	$\phi_{ ext{CN}}^{\mathcal{R},-\Omega}$	0.000 (0.000)	-0.001 (0.001)	$0.000 \\ (0.001)$	0.001 (0.001)	-0.000 (0.000)	0.000 (0.000)
Adj. R^2 Obs. Sector FEs?		0.000 761,402 Yes	0.002 282,159 Yes	0.000 479,243 Yes	0.000 484,817 Yes	0.001 527,119 Yes	0.002 71,198 Yes

Notes: Robust standard errors in parentheses. ***, **, and * denote statistical significance at the 1, 5, and 10 percent level.

Table 4: Regression Analysis of Retail Prices

- A 20% tariff increase is associated with an increase between 0.8% and 1.4% in the retail price after 12 months
- BOE calculationà 20% tariff increases cost by 18.6%, assuming total costs for imported goods is 50% of marginal cost of the good, retail prices should have risen 9.3% to keep margins constant!

China vs Non-China

- Measurement error? à not with COO (scraped + provided by retailer 2)
- Similarity is consistent with the washing machine results.

Affected vs Not-Affected Categories

Affected vs not-affected categories à more surprising

Affected vs Not-Affected Categories

Driven by HS code measurement error?

à No..we also find similar results when we use codes codes manually matched by a research assistant or provided by Retailer 2 (from their direct imports)

Manually Classified HS codes

Retailer 2 – Direct Imports

Spreading the Cost ?

- Are retailers spreading the cost to unaffected goods?
 - Some retailers publicly mention this as a strategy to cope with the tariffs
- If true, it would imply that US prices are rising relative to those in countries that have not imposed additional tariffs on Chinese goods

International Comparisons: Canada

CPI sectors(affected & unaffected)

Figure 8: Retail Prices for in US and Canada, Data from CPI

• Identical Goods (2500, Retailer 2)

Figure 9: Retail Prices from Retailer 2, US vs. Canada

Global Retailers(7 retailers)

Figure 10: Retail Prices in US and Canada, Multiple Retailers

Affected vs Not-Affected Categories

- Are retailers spreading the cost to unaffected goods?
 - Some retailers publicly mention this as a strategy to cope with the tariffs
- If true, this implies that US prices are rising relative to those in countries that have not imposed additional tariffs on Chinese goods, e.g. Canada
- No evidence when we compare prices in the US vs Canada
 - Some indirect effect of tariffs?
 - US retailers are reducing their margins

Other Adjustment Margins

 Front-loading of inventories à US retailers use first-in first-out accounting

Figure 11: Front-Running and Trade Diversion, Two Retailers

- Trade diversion
 - à Small increase, then stable à only `quick-wins?

Summary of Findings

- Tariff burden falls mostly on the US
 - Full import tariff passthrough
 - Chinese exporters are <u>not</u> reducing their prices à US importers bear the full cost of the tariff
 - Tariff passthrough much greater than exchange rate passthrough
 a so RMB depreciation is not helping much
 - US exporters are reducing prices à undifferentiated products
- Partial response at the retail level
 - Some goods prices increased, others did not
 - Importer/retailers reducing markups
 - Similar effects for affected and not-affected categories
 - spreading the cost or indirect effect of tariffs
 - Significant front-loading and little trade diversion

Final thoughts

- Our results reflect the short-term impact of these tariffs (1 year)
- As the trade war escalates, the shock is perceived to be more permanent, reducing the willingness of US firms to bear the cost alone

à More pressure on Chinese exporters to reduce USD prices

- More trade diversion possible
- RMB depreciation helps

à More retail passthrough

- No more front-loading
- Shrinking margins likely temporary