State Dependence of Fiscal Multipliers: the Source of Fluctuations Matters

Mishel Ghassibe Francesco Zanetti

University of Oxford

7 April 2022

National Bank of Belgium

Motivation: missing link

• Ramey and Zubairy (2018):

"Other than the zero lower bound papers, < ... > there is only a limited literature analyzing rigorous models that produces fiscal multipliers that are higher during times of high unemployment. Thus, there is still a gap between Keynes' original notion and modern theories".

Fiscal multipliers and states of the world

• Empirical debate:

Auerbach and Gorodnichenko (2012, 2013)

Fazzari, Morley and Panovska (2015) vs Ramey and Zubairy (2018)

(State dependence) (No state dependence)

• Theoretical models:

Fiscal multipliers almost state-independent in workhorse models (Sims and Wolff, 2017):

$$\frac{dY}{dG}(s) \approx \frac{dY}{dG}(s'), \qquad s' \neq s$$

where $s, s' \in S$ are states of the world (away from ZLB)

This paper: main results

- Theory of state-dependent government spending and taxation multipliers, in a framework with interaction between idle capacity and unsatisfied demand
 - Cyclicality of fiscal multipliers depends on the source of fluctuations
 - Spending multipliers high in demand-driven recessions, low if recession supply driven
 - Tax cut multipliers high in supply-driven recessions, low if recession demand driven
 - Spending austerity effective in supply recessions or periods of excessive demand if the labor market is sufficiently rigid
- Estimation of state-dependent multipliers, conditional on the source of fluctuations
 - Use co-movement of economic activity and inflation to identify states; findings support theory

Standard approach vs. our novel approach

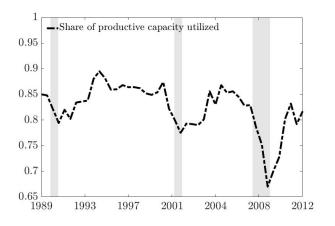
Standard approach: production is equal to demand

$$Y = C + G \tag{1}$$

- Our approach: presence of idle capacity and unsatisfied demand
- Justification: Idle capacity and unsatisfied demand are cyclical, affect optimal decisions of seller and buyers. They may play a role in the effect of fiscal policy

Evidence on idle capacity

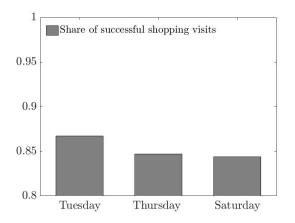
ISM data: firms only utilize around 80% of their current capacity



Source: Institute for Supply Management (ISM).

Evidence on unsatisfied demand

- Stockouts occur on 15% of visits to shops (Taylor and Fawcett, 2001)
- Even more frequent at 25% for online orders (Jing and Lewis, 2011)



Source: Taylor and Fawcett (2001).

Contribution to the literature

• Theory of fiscal policy state dependence: Christiano et al. (2011); Michaillat (2014); Canzoneri et al. (2016); Ziegenbein (2017); Jo and Zubairy (2022); Michaillat and Saez (2019)

Our Contribution. We show that the *source of fluctuations* matters for cyclicality of fiscal multipliers; also, we *jointly* rationalise state dependence of both spending and taxation multipliers.

• Empirics of fiscal policy state dependence: Auerbach and Gorodnichenko (2012, 2013); Fazzari et al. (2014); Ziegenbein (2017); Ramey and Zubairy (2018); Barnichon and Matthes (2021)

Our Contribution. Estimate *conditional* state-dependent fiscal multipliers; offer reconciliation of the empirical debate.

Roadmap

- 1 Framework
- Agents' optimisation problems
- Equilibrium types: flexprice vs. fixprice
- 2 Fiscal multipliers in a static model
- Analytical solutions for fiscal multipliers
- Derive cyclical properties of fiscal multipliers

- Contribution 1
- 3 Fiscal multipliers in a quantitative dynamic model
- Develop a dynamic model with goods market search
- Features: long-term customer relationships, rigid prices Contribution 2
- Evaluate multipliers in shock-specific recessions
- 4 Model-free econometric evidence
 - Estimate multipliers in shock-specific recessions

Contribution 3

Framework: search-and-matching in the goods market

- Framework similar to Michaillat and Saez (2015)
- Matching function maps sales (y) to capacity (k) and purchasing visits (v), so that $y \leq \min\{k, v\}$:

$$\underbrace{y}_{\text{Sales}} = (\underbrace{k^{-\delta}}_{\text{"Shop size"}} + \underbrace{v^{-\delta}}_{\text{"Queue length"}})^{-\frac{1}{\delta}}$$

• Goods market tightness (x):

$$x \equiv \underbrace{\frac{v}{k}}_{\text{Shop congestion}}$$

- Pr. of selling a product: $f(x) \equiv \frac{y}{k} = (1+x^{-\delta})^{-\frac{1}{\delta}}, f' > 0$ Evidence
- Pr. of a successful visit: $q(x) \equiv \frac{y}{y} = (1+x^{\delta})^{-\frac{1}{\delta}}, q' < 0$ Evidence
- Government spending affects v, and (supply-side) taxes affect k

Households shopping costs

- Households make v^c visits to shops, and there is cost of $\rho \in (0, 1)$ of consumption good per visit
- Total sales (y^c) to households:

$$y^c = q(x)v^c = c + \rho v^c.$$

• One unit of consumption thus requires $\frac{1}{q(x)-\rho}$ visits, bringing total sales for one unit of consumption equal to:

$$1 + \rho \frac{1}{q(x) - \rho} = 1 + \frac{\rho x}{f(x) - \rho x} \equiv 1 + \frac{\gamma(x)}{\gamma(x)},$$

where $\gamma(x) \equiv \frac{\rho x}{f(x)-\rho x}, \gamma'>0$ represents a 'congestion' wedge introduced by search-and-matching frictions

Households optimization

Consumption demand and labor supply

• Representative household gains utility from consumption of the produced good (c), non-produced good (m) that is in fixed supply (\bar{m}) and suffers disutility from supplying labour (l):

$$\max_{c,m,l} \left[\chi \frac{c^{1-\sigma}}{1-\sigma} + \zeta(m) - \frac{l^{1+\psi}}{1+\psi} \right] \qquad s.t.$$

$$p[1+\gamma(x)]c + m \le wl + \Pi - T + \bar{m}.$$

- Today consider $\sigma = 1$ (solution for generic $\sigma \ge 0$ in the paper)
- Consumption and labour supply functions (normalise $\zeta'(\bar{m}) = 1$):

$$c(p,x) = \frac{\chi}{p[1+\gamma(x)]}$$
 and $l(w) = w^{\frac{1}{\psi}}$,

where
$$\frac{\partial c}{\partial p} < 0, \frac{\partial c}{\partial x} < 0$$
 and $\frac{\partial l}{\partial w} > 0$

Firms optimization

Capacity, sales and labor demand

• Representative firm hires labour (n) that yields the following level of *current capacity k*:

$$k(n) = an^{\alpha}, \quad \alpha \in (0, 1].$$

• Due to search-and-matching frictions in the goods market, only a fraction f(x) of current capacity is utilised:

$$y(x; n) = f(x)k(n) = f(x)an^{\alpha}$$
.

• Profit maximisation given by:

$$\max_{n} \Pi = pf(x)an^{\alpha} - wn(1+\tau)$$

Labour demand function:

$$n(p, w, x; s) = \left[\frac{\alpha p f(x) a}{w(1+\tau)}\right]^{\frac{1}{1-\alpha}},$$

where
$$\frac{\partial n}{\partial p} > 0$$
, $\frac{\partial n}{\partial x} > 0$ and $\frac{\partial n}{\partial w} < 0$.

Government

• Given its exogenous consumption of the produced good G and payroll tax rate τ , the government imposes a lump sum tax T on the consumer that ensures that balanced budget is run:

$$T = p[1 + \gamma(x)]G - wn\tau.$$

 Alternative fiscal instruments considered in the paper: public employment, consumption tax, labor income tax, sales tax

Cyclicality just like gov. consumption

Cyclicality just like payroll tax

• Will focus on cases where there's only either demand-side fiscal policy $(G \neq 0, \tau = 0)$, or supply-side fiscal policy $(G = 0, \tau \neq 0)$

Equilibrium: analytical conditions

Goods market clearing:

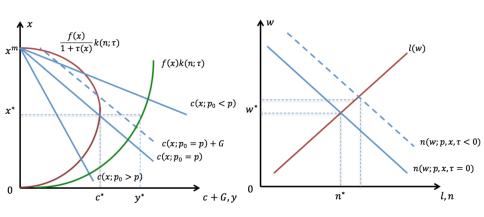
$$\frac{f(x)}{1+\gamma(x)}k(n;\tau)=c(p,x)+G$$

Labour market clearing:

$$l(w) = n(p, x, w; \tau)$$

Equilibrium: visual representation

Impact response to expansionary fiscal policy: increase in G, and a fall in au



Equilibrium determination

Goods market clearing:

$$\frac{f(x)}{1+\gamma(x)}k(n;\tau)=c(p,x)+G$$

Labour market clearing:

$$l(w) = n(p, x, w; \tau)$$

• Indeterminacy: two equilibrium conditions to hold for three variables (p, x and w), so infinitely many solutions

Closing the model: two polar cases

- Competitive equilibrium: fix tightness at the efficient level $(x = x^*)$, and let (p^*, w^*) clear the markets SP problem
 - Results for multipliers fully extend to other equilibria where tightness is fixed over the business cycle: Nash Bargaining, fixed markup pricing, as well as a generic Tightness Determination Mapping (TDM)
- **Fixprice equilibrium**: fix the price $(p = p_0)$, let (x, w) clear the markets
 - Results for multipliers fully extend to other equilibria where tightness varies over the business cycle: rigid (Calvo-type) pricing, as well as a generic Frictional Mapping (FM) More

Fiscal multiplier

- Define GDP as $Z \equiv c + G$
- Demand-side fiscal multiplier given by:

$$\varphi^{d}(x) \equiv \frac{dZ}{dG} = \frac{dZ/Z}{d(G/Z)} = \frac{dc}{dG} + 1.$$

$$\frac{dc}{dG} = \frac{\partial c}{\partial p} \frac{dp}{dG} + \frac{\partial c}{\partial x} \frac{dx}{dG}.$$
 (2)

Supply-side fiscal multiplier given by:

$$\varphi^{s}(x) \equiv -\frac{dZ/Z}{d\tau} = -\frac{1}{c}\frac{dc}{d\tau}.$$

$$\frac{dc}{d\tau} = \frac{\partial c}{\partial p} \frac{dp}{d\tau} + \frac{\partial c}{\partial x} \frac{dx}{d\tau}.$$
 (3)

Flexprice equilibrium multipliers

Proposition 1. In a competitive equilibrium, the demand-side fiscal multiplier and the supply-side fiscal multiplier are equal and given by:

$$\varphi^* = \frac{\alpha}{1 + \psi} \in [0, 1].$$

- Note that $e^s = \frac{\partial \ln l}{\partial \ln w} = \frac{1}{d}$ and $|e^d| = |\frac{\partial \ln n}{\partial \ln w}| = \frac{1}{1-\alpha}$, so all that matters for the value of the multiplier are the relative elasticities of labour supply and labour demand
- Importantly, $\varphi^* \to 0$ as $\psi \to \infty$; and $\varphi^* = 1$ when $\alpha = 1, \psi = 0$
- Thus φ^* depends on labour market flexibility

Fixprice equilibrium multipliers

Fixed capacity fiscal multiplier

Lemma 3. Define the fixed capacity fiscal multiplier $\theta(x)$ to be the demand-side fiscal multiplier under fixed labour supply in the economy, so that

$$\theta(x) \equiv \frac{dZ}{dG}|_{\psi \to \infty}$$

then $\theta(x)$ has the following properties:

$$\theta(x) = \begin{cases} (-\infty, 0), & \text{if } x \in (x^*, x^m) \\ 0, & \text{if } x = x^* \\ (0, 1), & \text{if } x \in (0, x^*) \end{cases}$$
$$\theta'(x) < 0, \qquad x \in (0, x^m),$$

where x^m is given by $f(x^m) = \rho x^m$.

Demand-side fiscal multiplier (fixprice equilibrium)

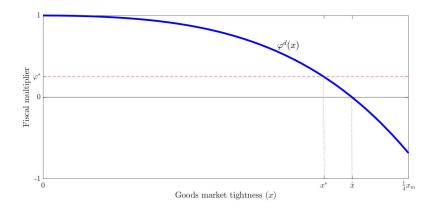
Proposition 2. In a fixprice equilibrium, the demand-side fiscal multiplier $\varphi^d(x)$ is given by

$$\varphi^{d}(x) = \underbrace{\varphi^{*}}_{\text{State-invariant component}} + \underbrace{\theta(x) \times (1 - \varphi^{*})}_{\text{State-dependent componen}}$$

where $\varphi^* = \frac{\alpha}{1+i\hbar}$ is the competitive equilibrium multiplier. Hence, $\varphi^d(x) \in (-\infty, 1]$ and $\frac{d\varphi^d(x)}{dx} < 0, \forall x \in (0, x^m).$

- $\frac{d\varphi^d}{dx}$ < 0 so φ^d strictly falls in tightness
- Note that $\varphi^d(x^*) = \varphi^*$, so competitive and fixprice equilibrium multipliers can coincide
- Convex combination: $1 \times \varphi^* + \theta(x) \times (1 \varphi^*)$

Demand-side fiscal multiplier (fixprice equilibrium)



Demand-side fiscal multiplier (fixprice equilibrium)

Corollary 1. There always exists tightness $\hat{x} \in [x^*, x^m)$ such that $\varphi^d(x) < 0, \forall x \in (\hat{x}, x^m)$, and it is given by:

$$\hat{x} = \theta^{-1} \left(-\frac{\varphi^*}{1 - \varphi^*} \right),\,$$

and hence $\frac{d\hat{x}}{d\varphi^*} > 0$.

- Endogenous supply response does not eliminate the possibility of a negative demand-side multiplier
- There always exists a fixprice equilibrium that is sufficiently tight to make government spending crowd out private consumption more than one for one

Supply-side fiscal multiplier (fixprice equilibrium)

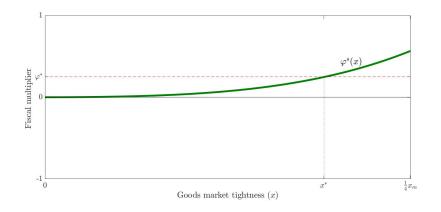
Proposition 3. In a fixprice equilibrium, the supply-side fiscal multiplier $\varphi^{s}(x)$ is given by

$$\varphi^{s}(x) = \underbrace{\varphi^{*}}_{\text{State-invariant component}} - \underbrace{\theta(x) \times \varphi^{*}}_{\text{State-dependent component}},$$

where $\varphi^* = \frac{\alpha}{1+i\hbar}$ is the competitive equilibrium multiplier. Hence, $\varphi^d(x) \in (0,+\infty)$ and $\frac{d\varphi^d(x)}{dx} > 0, \forall x \in (0,x^m)$

- $\frac{d\varphi^s}{ds} > 0$, so moves in the same direction as tightness
- Again, note that $\varphi^s(x^*) = \varphi^*$, just like for the demand-side multiplier

Supply-side fiscal multiplier (fixprice equilibrium)



Relationship between the two multipliers

Corollary 2. *In a fixprice equilibrium, the demand-side and supply-side fiscal* multipliers are related as

$$\underbrace{\varphi^d(x)}_{\text{Demand-side multiplier}} = \underbrace{\theta(x)}_{\text{Fixed capacity multiplier}} + \underbrace{\varphi^s(x)}_{\text{Supply-side multiplier}}$$

so that the difference between the two is just the fixed capacity fiscal multiplier.

- Given the properties of $\theta(x)$, it follows that $\varphi^d(x) > \varphi^s(x)$ if $x < x^*$ and vice versa
- Is there any stimulative role for fiscal austerity?

Spending Austerity Threshold

Corollary 3. Suppose $\varphi^* < 0.5$, then there always exists tightness $\tilde{x} \in [x^*, x^m)$ such that:

$$-\varphi^d(x) > \varphi^s(x) > \varphi^d(x), \quad \forall x \in (\tilde{x}, x^m).$$

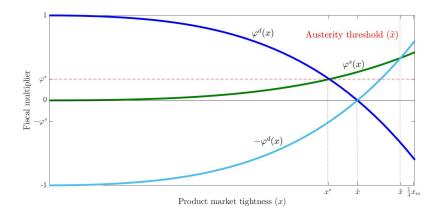
Furthermore, \tilde{x} is given by:

$$\tilde{x} = \theta^{-1} \left(-\frac{2\varphi^*}{1 - 2\varphi^*} \right), \quad \varphi^* < 0.5$$

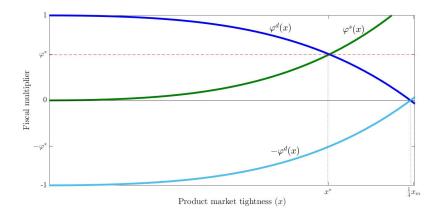
and hence $\frac{d\tilde{x}}{dc^*} > 0$.

• If the labour market is sufficiently inelastic ($\varphi^* < 0.5$) and the fixprice equilibrium is sufficiently tight $(x > \tilde{x} > x^*)$, then spending austerity is the policy with the highest multiplier

Inelastic labour market $(\varphi^* < 0.5)$



Elastic labour market ($\varphi^* > 0.5$)



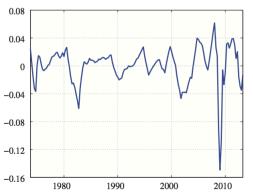
Cyclicality of fiscal multipliers

Corollary 4. *In a competitive equilibrium, both demand-side and supply-side* multipliers are acyclical.

Corollary 5. *In a fixprice equilibrium, the demand-side multiplier is* countercyclical under demand-driven fluctuations, and procyclical under supply-driven fluctuations.

Corollary 6. In a fixprice equilibrium, the supply-side multiplier is countercyclical under supply-driven fluctuations, and procyclical under demand-driven fluctuations.

What type of equilibrium? (US)



A. Cyclical component of product market tightness

Source: Michaillat and Saez (2015).

Quantitative dynamic model - overview

Long-term customer relationships: a fraction $\eta \in (0, 1]$ destroyed in any given period; new customer relationships governed by the matching function

$$\left[\left(k_t-(1-\eta)y_{t-1}\right)^{-\delta}+v_t^{-\delta}\right]^{-\frac{1}{\delta}}, \qquad \delta>0$$

and goods market tightness now given by $x_t \equiv \frac{v_t}{k_t - (1-n)v_{t-1}}$

2 **Partial price rigidity**: let $\{p_t^*\}_{t=0}^{\infty}$ be a sequence of prices consistent with an equilibrium featuring efficient tightness; only a fraction $(1-\varepsilon) \in [0,1]$ of firms get to set this price:

$$p_t = p_{t-1}^{\varepsilon}(p_t^*)^{1-\varepsilon}, \quad \varepsilon \in [0, 1].$$

Conditional state-dependent fiscal multipliers

- Use fully non-linear solution to our dynamic model under perfect foresight to construct spending and tax-cut multipliers in recession/expansion episodes generated by particular shocks
- Obtain impulse response to a preference/technology shock $\{GDP_i^{shock}\}_{i=0}^H$, where shock is one-time innovation to χ or a
- Obtain impulse response to simultaneous preference/technology and spending shock $\{GDP_i^{shock+G}\}_{i=0}^H$
- Conditional spending multiplier:

$$\varphi^{G}(shock) = \frac{\sum_{j=0}^{H} \left[GDP_{j}^{shock+\varepsilon^{G}} - GDP_{j}^{shock} \right]}{\sum_{j=0}^{H} \left[G_{j}^{\varepsilon^{G}} - g \right]}$$

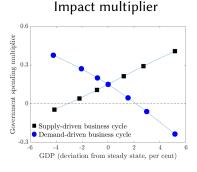
• Similarly, *conditional* tax cut multiplier:

$$\varphi^{\tau^{i}}(shock) = \frac{\left[\textit{GDP}_{\textit{H}}^{\textit{shock} - \varepsilon^{\tau}} - \textit{GDP}_{\textit{H}}^{\textit{shock}}\right]/\overline{\textit{GDP}}}{\varepsilon^{\tau^{i}}}$$

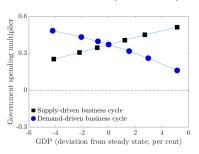
Conditional spending multipliers

Government spending 1% of GDP

t term

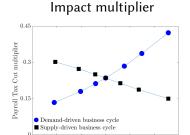


Cumulative 2-year multiplier



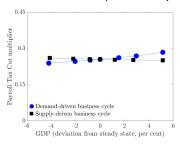
Conditional tax cut multipliers

Cut payroll tax by 1%



GDP (deviation from steady state, per cent)

Cumulative 2-year multiplier



Conditional state-dependent spending multipliers

Extend the one-step IV procedure from Ramey and Zubairy (2018):

$$\sum_{s=t}^{t+H} \left(\frac{GDP}{GDP^*} \right)_s = \mathbf{1} \{ U_{t-1} < \bar{U} \} \left[\alpha_H^E + \beta_H^E \sum_{s=t}^{t+H} \left(\frac{G}{GDP^*} \right)_s + \gamma_H^E \mathbf{z}_{t-1} \right] +$$

$$\mathbf{1}\{U_{t-1} \geq \bar{U}; \pi_{t-1} < \tilde{\pi}_{t-1}\} \left[\alpha_H^{DR} + \beta_H^{DR} \sum_{s=t}^{t+H} \left(\frac{G}{GDP^*}\right)_s + \gamma_H^{DR} \mathbf{z}_{t-1}\right] +$$

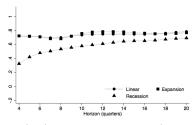
$$\mathbf{1}\{U_{t-1} \geq \bar{U}; \pi_{t-1} \geq \tilde{\pi}_{t-1}\} \left[\alpha_H^{SR} + \beta_H^{SR} \sum_{s=t}^{t+H} \left(\frac{G}{GDP^*} \right)_s + \gamma_H^{SR} \mathbf{z}_{t-1} \right] + \varepsilon_{t+H}$$

• Spending instrument: historical data on military spending news in US (1889-2015) (Owyang, Ramey and Zubairy, 2013)

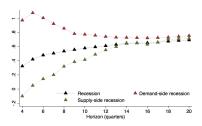
Econometric evidence: conditional state-dependent spending multipliers

US data (1889-2015)		2 year		4 year	
State	(1)	(2)	(3)	(4)	(5)
Linear	0.70***				
	(0.06)				
$1\{U_t<\bar{U}\}$		0.68***	0.68***	0.76***	0.76***
		(0.10)	(0.10)	(0.13)	(0.12)
$1\{U_t \geq \bar{U}\}$		0.54***		0.65***	
		(0.13)		(0.08)	
$1\{U_t \geq \bar{U}; \pi_t < \tilde{\pi}_t\}$			0.86***		0.71***
			(0.33)		(0.12)
$1\{U_t \geq \bar{U}; \pi_t \geq \tilde{\pi}_t\}$			0.32***		0.63***
			(0.11)		(0.09)
Т	416	416	416	408	408

Government spending multipliers across horizons



Government spending multipliers in recessions and expansions across horizons



Government spending multipliers in demand-side and supply-side recessions across horizons

Conditional state-dependent tax cut multipliers

Extend the procedure from Eskandari (2019):

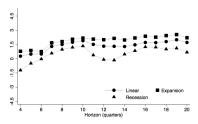
$$\begin{split} \ln GDP_{t+H} - \ln GDP_{t-1} &= \mathbf{1} \{ U_{t-1} < \bar{U} \} \left[\alpha_H^E + \beta_H^E \tau_t + \gamma_H^E \mathbf{z}_{t-1} \right] + \\ &\mathbf{1} \{ U_{t-1} \geq \bar{U}; \pi_{t-1} < \tilde{\pi}_{t-1} \} \left[\alpha_H^{DR} + \beta_H^{DR} \tau_t + \gamma_H^{DR} \mathbf{z}_{t-1} \right] + \\ &\mathbf{1} \{ U_{t-1} \geq \bar{U}; \pi_{t-1} \geq \tilde{\pi}_{t-1} \} \left[\alpha_H^{SR} + \beta_H^{SR} \tau_t + \gamma_H^{SR} \mathbf{z}_{t-1} \right] + \varepsilon_{t+H} \end{split}$$

• Use exogenous variation in US tax rates (1947-2007) from narrative accounts (Romer and Romer, 2010)

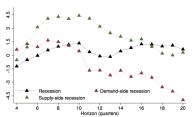
Conditional state-dependent tax cut multipliers

US data (1947-2007)		2 year		4 year	
State	(1)	(2)	(3)	(4)	(5)
Linear	1.50				
	(1.14)				
$1\{U_t<\bar{U}\}$		1.81	1.81	2.37**	2.37**
		(1.17)	(1.12)	(0.99)	(0.99)
$1\{U_t \geq \bar{U}\}$		0.98		1.24	
		(1.07)		(0.87)	
$1\{U_t \geq ar{U}; \pi_t < ilde{\pi}_t\}$			1.49		-1.98
			(1.04)		(2.75)
$1\{U_t \geq \bar{U}; \pi_t \geq \tilde{\pi}_t\}$			4.29*		1.80*
			(2.18)		(1.00)
Т	240	240	240	240	240

Tax cut multipliers across horizons (US Romer-Romer narrative tax shocks, 1947-2007)



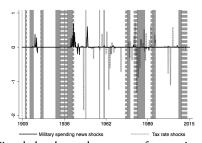
Tax cut multipliers in recessions and expansions across horizons



Tax cut multipliers in demand-side and supply-side recessions across horizons

Demand-side and supply-side recessions: a closer look

Demand- and supply-side recessions



Fiscal shocks and sources of recessions

Conclusion

- We develop a theory of state-dependent spending and taxation multipliers, in a framework with idle capacity and unsatisfied demand
- Key finding: the cyclicality of fiscal multipliers depends on the source of fluctuations
- Econometric estimation conditional on the source of fluctuations corroborates our theory on the state dependence of fiscal multipliers
- Provide a resolution to contrasting empirical findings

Thank you!

APPENDIX

(More) general cases

- Competitive equilibrium considered before involves pinning down tightness at the efficient level x^* and letting price and wage adjust fully flexibly in order to make sure it stays there following shocks
- However, this is not the only way to pin down tightness: first consider Nash bargaining and fixed markup pricing as two particular alternatives, then introduce a general Tightness Determination Mapping (TDM)
- Also, before we considered fixed price as a particular deviation from fully flexible pricing; now consider more general kind of frictions: generic price rigidity, informational frictions
- Then introduce a general Frictional Mapping (FM)

Nash bargaining

• Consumers' surplus from buying an additional unit at price \tilde{p} after a match is made:

$$\mathcal{B}(\tilde{p}) = \frac{\chi}{c} - \tilde{p}.$$

• Firms' surplus from selling an extra unit at price \tilde{p} after a match is made:

$$S(\tilde{p}) = \tilde{p} - pf(x).$$

• Assuming that consumers' bargaining power given by $\beta \in (0, 1)$, solution to Nash bargaining given by:

$$(1-\beta)\mathcal{S}(p)=\beta\mathcal{B}(p).$$

Nash bargaining

 Combining the solution to Nash bargaining with agents' optimality conditions:

$$\frac{1-\beta}{\beta} = \frac{\gamma(x^L)}{1-f(x^L)}, \quad \frac{dx^L}{d\beta} < 0.$$

- Nash bargaining pins down tightness at $x = x^L$, which, as can be seen above, is indeed invariant to demand-side and supply-side shocks, as required for a long-run equilibirium
- The pair (p^L, w^L) now adjusts fully flexibly to ensure that all optimality and market clearing conditions are satisfied with $x = x^L$
- Hosios condition:

$$\beta = \frac{1}{1 + \frac{\gamma(x^*)}{1 - f(x^*)}}.$$

Fixed markup pricing

 Assume that equilibrium prices are set at a fixed markup over the marginal cost:

$$p = \mu \times mc$$

where mc is firms' marginal cost at the optimum, $\mu > 1$ is a markup parameter.

• From firms' profit maximisation condition:

$$p = \frac{1}{f(x)}mc.$$

 Hence the markup parameter pins down the equilibrium level of tightness according to:

$$f(x^L) = \frac{1}{\mu}, \quad \frac{dx^L}{d\mu} < 0.$$

Fixed markup pricing

- It is apparent that x^{L} is invariant to demand-side and supply-side shocks, so indeed qualifies for a long-run equilibrium
- The pair (p^L, w^L) now adjusts fully flexibly to ensure that agents' optimality and market clearing conditions are satisfied with $x = x^{L}$. pinned down by the markup parameter μ
- "Hosios" condition:

$$\mu = \frac{1}{f(x^*)}.$$

• Note that as we remove the matching cost $(\rho = 0)$, $f(x^*) \rightarrow 1$, and $\mu \rightarrow$ 1, so converge to standard marginal cost pricing under perfect competition.

Tightness Determination Mapping

Definition 3. A Tightness Determination Mapping (TDM) \mathcal{M} is given by:

$$\mathcal{M}: \quad \left\{\Omega^{M}, \Omega^{S}, \Omega^{T}\right\} \rightarrow x^{L},$$

where $\Omega^M = \{\rho, \gamma, \psi, \alpha\}$ is the set of model structural parameters, $\Omega^S = \{\chi, a, G, s\}$ is the set of shock parameters, Ω^T is the set of parameters specific to the TDM and x^L is the resulting tightness.

Further, a TDM $\mathcal M$ is said to be **shock invariant** if and only if

$$\mathcal{M}\left(\Omega^{M},\Omega^{S},\Omega^{T}\right)=\mathcal{M}\left(\Omega^{M},\Omega^{T}\right),$$

so that the shock parameters do not affect the determination of tightness.

Flexible equilibrium

Definition 4. A **flexible** equilibrium is a vector (p^L, w^L, \mathcal{M}) , and associated allocations, such that the agents' optimality conditions and the market clearing conditions are satisfied with tightness pinned down at a level $x^L = \mathcal{M}(\Omega^M, \Omega^S, \Omega^T)$.

- Competitive equilibrium is a special case of flexible equilibrium under $x^L = x^*$
- Nash bargaining is a particular TDM with $\Omega^T = \{\beta\}$, which pins down tightness according to $\frac{1-\beta}{\beta} = \frac{\gamma(x^L)}{1-f(x^L)}$ and then prices and wages adjust flexibly to ensure tightness stays at that level
- Similarly, fixed markup pricing is a TDM with $\Omega^T = \{\mu\}$, which pins down tightness according to $f(x^L) = \frac{1}{\mu}$
- Note that both are shock-invariant TDMs

Flexible equilibrium multipliers

Proposition 8. In any flexible equilibrium generated by a shock-invariant TDM, the demand-side fiscal multiplier and the supply-side fiscal multiplier are equal and given by:

$$\varphi^* = \frac{\alpha}{1 + \psi} \in [0, 1].$$

 In any flexible equilibrium generated by a shock-invariant TDM (including the competitive equilibrium as a special case) both multipliers are equal, are invariant to both demand-side and supply-side shocks and lie strictly between 0 and 1 Back

Price rigidity

- Before we considered fixed prices a way to resolve indeterminacy, but can consider a more general case of rigid prices
- In particular, for a given flexible equilibrium (p^L, w^L, \mathcal{M}) , can consider a **rigid price equilibrium**, where p is set according to:

$$p = (p_0)^{\varepsilon} (p^L)^{1-\varepsilon}, \quad \varepsilon \in (0, 1]$$

where ε is the degree of price rigidity and p_0 is a parameter.

ullet Fixpirce equilibrium remains a special case under arepsilon=1

Demand-side fiscal multiplier (rigid price equilibirum)

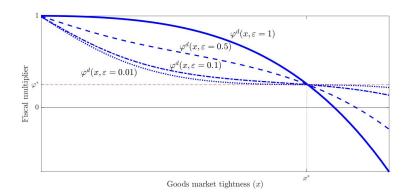
Proposition 9. In a rigid price equilibrium (p_0, x, w, ε) , the demand-side fiscal multiplier $\varphi^d(x)$ is given by

$$\varphi^{d}(x) = \varphi^{*} + \theta(x) \times \left[(1 - \varphi^{*}) \{ 1 - (1 - \varepsilon)g(x, x^{L}) \} \right]$$

where $\varphi^* = \frac{\alpha}{1+\psi}$ is the long-run equilibrium multiplier and the function $g(x, x^L)$ is given by:

$$g(x, x^{L}) = \frac{f(x) - \rho x}{f(x^{L}) - \rho x^{L}}.$$

Demand-side fiscal multiplier (rigid price equilibrium)



Supply-side fiscal multiplier (rigid price equilibrium)

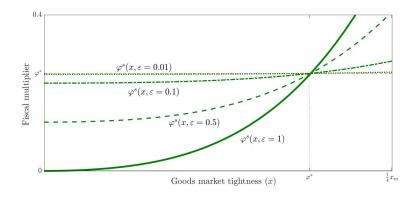
Proposition 10. In a rigid price equilibrium (p_0, x, w, ε) , the supply-side fiscal multiplier $\varphi^s(x)$ is given by

$$\varphi^{s}(x) = \varphi^{*} - \theta(x) \times \varepsilon \varphi^{*},$$

where $\varphi^* = \frac{\alpha}{1+\imath b}$ is the long-run equilibrium multiplier. Hence,

$$arphi^d(x) \in (0,+\infty)$$
 and $rac{darphi^d(x)}{dx} > 0, orall x \in (0,x^m)$

Supply-side fiscal multiplier (rigid price equilibrium)



Frictional Mapping

Definition 5. For a given flexible equilibrium (p^L, w^L, \mathcal{M}) , a Frictional Mapping (FM) \mathcal{T} is given by:

$$\mathcal{T}:\quad \left\{ p^{L},\Omega^{F}\right\} \rightarrow p^{F},$$

where Ω^F is the set of parameters specific to the FM and p^F is the resulting price.

Moreover, the Frictional Mapping $\mathcal{T}(p^L;\Omega^F)$ is said to be **contractionary** if and only if

$$\frac{d \ln p}{d \ln p^L} = \frac{d \mathcal{T}(p^L; \Omega^F)}{dp^L} \frac{p^L}{p} \in [0, 1).$$

Frictional equilibrium

Definition 6. For a given flexible equilibrium (p^L, w^L, \mathcal{M}) , a **frictional** equilibrium is a vector (p^F, w^F, \mathcal{T}) , and associated allocations, such that the agents' optimality conditions and the market clearing conditions are satisfied with the price given by:

$$p^F = \mathcal{T}(p^L).$$

- Rigid price equilibrium is a special case of a frictional equilibrium for $\mathcal{T}(z) = (p_0)^{\varepsilon}(z)^{1-\varepsilon}, \Omega^F = \{p_0, \varepsilon\}, \varepsilon \in (0, 1]$
- Further, the above frictional mapping associated with a rigid price equilibrium is indeed contractionary, since

$$\frac{d\mathcal{T}(z;\Omega^F)}{dz}\frac{z}{p^F}=(1-\varepsilon)\in[0,1),$$

as
$$\varepsilon \in (0, 1]$$

Demand-side fiscal multiplier (frictional equilibrium)

Proposition 11. In a frictional equilibrium generated by a Frictional Mapping $\mathcal{T}(.)$, the demand-side fiscal multiplier $\varphi^d(x)$ is given by

$$\varphi^{d}(x) = \varphi^{*} + \theta(x) \times \left[(1 - \varphi^{*}) \{ 1 - \frac{\mathcal{T}'(p^{L})p^{L}}{\mathcal{T}(p^{L})} g(x, x^{L}) \} \right]$$

where $\varphi^* = \frac{\alpha}{1+\psi}$ is the flexible equilibrium multiplier and the function $g(x, x^L)$ is given by:

$$g(x, x^{L}) = \frac{f(x) - \rho x}{f(x^{L}) - \rho x^{L}}.$$

Further, $\frac{d\varphi^d(x)}{dx}|_{x=x^L} < 0$ as long as $\mathcal{T}(.)$ is contractionary.

Supply-side fiscal multiplier (frictional equilibrium)

Proposition 12. In a frictional equilibrium generated by a Frictional Mapping $\mathcal{T}(.)$, the supply-side fiscal multiplier $\varphi^s(x)$ is given by

$$\varphi^{s}(x) = \varphi^{*} - \theta(x) \times \left(1 - \frac{\mathcal{T}'(p^{L})p^{L}}{\mathcal{T}(p^{L})}\right) \varphi^{*},$$

where $\varphi^* = \frac{\alpha}{1+\psi}$ is the flexible equilibrium multiplier.

Further, $\frac{d\varphi^s(x)}{dx}|_{x=x^L} > 0$ as long as $\mathcal{T}(.)$ is contractionary.

Cyclicality of multipliers - flexible equilibria

Proposition 13. In any flexible equilibrium generated by policy-invariant TDM both demand-side and supply-side multipliers are acyclical.

Proof. Trivial – in any such flexible equilibrium both multipliers are given by φ^* and clearly acyclical.

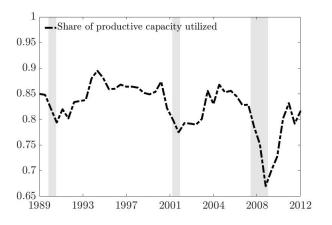
Cyclicality of multipliers - frictional equilibria

Proposition 14. In any frictional equilibrium generated by a contractionary frictional mapping, in the local neighbourhood of the flexible equilibrium allocation, the demand-side multiplier is countercyclical under demand-driven fluctuations, and procyclical under supply-driven fluctuations

Proposition 15. In any frictional equilibrium generated by a contractionary frictional mapping, in the local neighbourhood of the flexible equilibrium allocation, the supply-side multiplier is procyclical under demand-driven fluctuations, and countercyclical under supply-driven fluctuations

Goods market clearing? Firms not convinced

• ISM data: firms only utilize around 80% of their current capacity



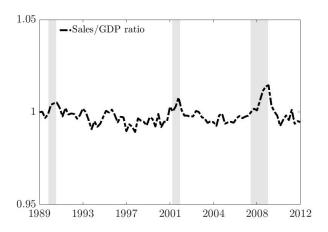
Source: Institute for Supply Management (ISM).

Goods market clearing? Households not sure either

- Stockouts occur on 15% of visits to shops (Taylor and Fawcett, 2001)
- Even more frequent at 25% for online orders (Jing and Lewis, 2011)

Source: Taylor and Fawcett (2001).

Accounting for inventories



Source: Bureau of Economic Analysis (BEA).

Social planner's problem

• First consider the social planner's problem (tightness *not* taken as given):

$$\max_{c,m,l,v} \left[\chi \frac{c^{1-\sigma}}{1-\sigma} + \zeta(m) - \frac{l^{1+\psi}}{1+\psi} \right] \qquad s.t$$

$$c + G + \rho v = (k^{-\delta} + v^{-\delta})^{-\frac{1}{\delta}},$$

$$k = al^{\alpha}, m = \bar{m}.$$

• Establishes *efficient tightness x**:

$$f'(x^*) = \rho,$$

as well as efficient levels of other variables (c^*, l^*, v^*)

