External Instrument SVAR Analysis for Noninvertible Shocks

Mario Forni¹ Luca Gambetti² Giovanni Ricco³

¹Università di Modena e Reggio Emilia, CEPR & RECent
 ²Universitat Autònoma de Barcelona, BSE, Università di Torino & CCA
 ³École Polytechnique, University of Warwick, OFCE-SciencesPo & CEPR

National Bank of Belgium, 4th May 2023

IV in Macroeconomics

▶ New and increasingly popular method for Macroeconometrics

$$z_t = lpha u_t^i + \eta_t \qquad \eta_t \sim \mathcal{WN}(0, \sigma_\eta^2)$$

© : 1/30

IV in Macroeconomics

► New and increasingly popular method for Macroeconometrics

$$z_t = lpha u_t^i + \eta_t \qquad \eta_t \sim \mathcal{WN}(0, \sigma_\eta^2)$$

- ► Wealth of **new instruments** expanding Macro literature:
 - ▶ **Oil** Hamilton 2003; Kilian, 2008, Känzig, 2021
 - ▶ Government purchases Ramey, 2011, Ricco et al., 2016, Ramey and Zubairy, 2018
 - ► Tax Romer and Romer, 2010, Leeper et al., 2013, Mertens and Ravn, 2012, Mertens and Montiel-Olea. 2018
 - Conventional/Unconventional monetary policy Romer and Romer, 2004, Gürkaynak et al. 2005, Gertler and Karadi, 2015, Jarocinski and Karadi 2020, Swanson, 2020, Miranda-Agrippino and Ricco, forth.,
 - ► Government asset purchases Fieldhouse et al. 2017, Fieldhouse et al. 2018
 - ► Confidence Lagerborg et al. 2018
 - ► Technology news Cascaldi-Garcia and Vukotić 2019

1/30 :

IV in Macroeconomics

▶ New and increasingly popular method for Macroeconometrics

$$z_t = \alpha u_t^i + \underbrace{(\dots \dots)}_{\text{contamination}} + \eta_t \qquad \eta_t \sim \mathcal{WN}(0, \sigma_\eta^2)$$

- ▶ Wealth of **new instruments** expanding Macro literature:
 - ▶ Oil Hamilton 2003; Kilian, 2008, Känzig, 2021
 - ► Government purchases Ramey, 2011, Ricco et al., 2016, Ramey and Zubairy, 2018
 - ► Tax Romer and Romer, 2010, Leeper et al., 2013, Mertens and Ravn, 2012, Mertens and Montiel-Olea, 2018
 - Conventional/Unconventional monetary policy Romer and Romer, 2004, Gürkaynak et al. 2005, Gertler and Karadi, 2015, Jarocinski and Karadi 2020, Swanson, 2020, Miranda-Agrippino and Ricco, forth.,
 - ► Government asset purchases Fieldhouse et al. 2017, Fieldhouse et al. 2018
 - ► Confidence Lagerborg et al. 2018
 - ► Technology news Cascaldi-Garcia and Vukotić 2019

9 : 1/30

Conditions for External Instrument SVAR

Stock (2008), Stock and Watson (2012, 2018) and Mertens and Ravn (2013)

Reduced-Form VAR

$$A(L)y_t = \varepsilon_t$$

Conditions – Global Invertibility

- (i) $\mathbb{E}[u_t^1 z_t] = \alpha$ (Relevance)
- (ii) $\mathbb{E}[u_t^{2:n}z_t] = 0$ (Contemporaneous Exogeneity)
- (iii) $u_t = Proj(u_t|Y_t, Y_{t-1},...)$ (Global Invertibility)

© : 2/30

Conditions for External Instrument SVAR

Stock (2008), Stock and Watson (2012, 2018) and Mertens and Ravn (2013), Miranda-Agrippino, Ricco (2023)

Reduced-Form VAR

$$A(L)y_t = \varepsilon_t$$

Conditions – Partial Invertibility

- (i) $\mathbb{E}[u_t^1 z_t] = \alpha$ (Relevance)
- (ii) $\mathbb{E}[u_t^{2:n}z_t] = 0$ (Contemporaneous Exogeneity)
- (iii) $\mathbb{E}[u_{t-j}^{m+1:n}z_t^{\perp}]=0$ for all $j\neq 0$ for which $\mathbb{E}[u_{t-j}^{m+1:n}\nu_t']\neq 0$

(Limited Lead-Lag Exogeneity for partial invertibility)

© : 2/30

What if the shocks of interest are not invertible?

1 Is IV identification still possible in SVAR?

© :

3/30

What if the shocks of interest are not invertible?

- 1 Is IV identification still possible in SVAR?
 - ⇒ Yes, internal instrument SVAR (Plagborg-Møller and Wolf, 2021)
 - many additional parameters
 - potentially very large information set
 - ► IV and VAR sample have to align
 - ► Lag order fixed by the VAR

© : 3/30

What if the shocks of interest are not invertible?

- 1) Is IV identification still possible in SVAR?
 - ⇒ Yes, internal instrument SVAR (Plagborg-Møller and Wolf, 2021)
 - many additional parameters
 - potentially very large information set
 - ► IV and VAR sample have to align
 - Lag order fixed by the VAR
 - ⇒ Yes, external instrument SVAR to retain flexibility (this paper)

⊙ : 3/30

This Paper

- 1) Is IV identification still possible in SVAR?
 - ⇒ Yes, internal instrument SVAR (Plagborg-Møller and Wolf, 2021)
 - many additional parameters
 - potentially very large information set
 - ► IV and VAR sample have to align
 - ► Lag order fixed by the VAR
 - → Yes, external instrument SVAR to retain flexibility (this paper)
- (2) General Representation Result
 - ▶ invertible/fundamental (Lippi and Reichlin, 1994)
 - recoverable (Chahrour and Jurado, 2021)
 - non-recoverable
- 3 Tests for invertibility and recoverability
- 4 Validation in simulated environment & application to monetary policy

© : 3/30

A Representation Result

The model

► The structural representation (SMA)

$$y_t = B(L)u_t \qquad u_t \sim \mathcal{WN}(0, I_q) \tag{1}$$

B(L) is an $n \times q$ matrix of rational function in the lag operator L, $n \leq q$

► The Wold representation

$$y_t = C(L)\varepsilon_t \tag{2}$$

► The **VAR** representation

$$A(L)y_t = \varepsilon_t \tag{3}$$

▶ What is the relation between the structural shocks u_t and the VAR residuals ε_t ?

9 :

Innovations and Shocks

 \blacktriangleright VAR residuals ε_t are linear combinations of the current and lagged structural shocks u_t

$$\varepsilon_t = A(L)y_t = A(L)B(L)u_t = Q(L)u_t \tag{4}$$

 \blacktriangleright Generally, the inverse map is not exact function of the ε_t

$$u_t = P(u_t|\mathcal{H}) + s_t = D'(F)\varepsilon_t + s_t \tag{5}$$

where P is the linear projection operator and $\mathcal{H} = \overline{\operatorname{span}}(\varepsilon_{j,t-k}, j=1,\ldots,n,k\in\mathbb{Z})$

The structural IRFs are linked to the Wold representation by

$$B(L) = C(L)Q(L) = C(L)\Sigma_{\varepsilon}D(L)$$

In particular, an IRF of interest

$$b_i(L) = C(L)q_i(L) = C(L)\Sigma_{\varepsilon}d_i(L)$$

⊙ :

Invertible shocks

Invertibility

A shock is invertible if it is a linear combination of the present and past values of the VAR variables, or, equivalently, a contemporaneous linear combination of the VAR residuals

Proposition – Structural shocks and VAR residuals

If u_{it} is fundamental for y_t , then $d_i(F) = d_{i0} = d_i$ and $q_i(F) = q_{i0} = q_i$, so that

$$u_{it} = d_i' \varepsilon_t = q_i' \Sigma_{\varepsilon}^{-1} \varepsilon_t. \tag{6}$$

© : 6/30

Recoverable shocks

Recoverability

A shock is **recoverable** if it is a linear combination of the present, past and future values of the VAR variables, or, equivalently, it is a linear combination of the present and future values of the VAR residuals

Proposition – Structural shocks and VAR residuals

If u_{it} is recoverable with respect to y_t ,

$$u_{it} = d_i'(F)\varepsilon_t = q_i'(F)\Sigma_{\varepsilon}^{-1}\varepsilon_t, \tag{7}$$

where $d_i(F) = d_{i0} + d_{i1}F + d_{i2}F^2 + \cdots$ is the i-th column of D(F) and $q_i(F) = q_{i0} + q_{i1}F + q_{i2}F^2 + \cdots$ is the i-th column of Q(F). Moreover

$$d_i'(F)\Sigma_{\varepsilon}d_i(L)=q_i'(F)\Sigma_{\varepsilon}^{-1}q_i(L)=1.$$

 \mathfrak{I} :

A General Representation

Any vector process y_t with an SMA and VAR form can be represented as

$$y_{t} = B^{f}(L)u_{t}^{f} + B^{r}(L)u_{t}^{r} + B^{n}(L)u_{t}^{n}$$

$$= C(L)Q^{f}u_{t}^{f} + C(L)Q^{r}(L)u_{t}^{r} + C(L)Q^{n}(L)u_{t}^{n}$$

$$= C(L)\Sigma_{\varepsilon}D^{f}u_{t}^{f} + C(L)\Sigma_{\varepsilon}D^{r}(L)u_{t}^{r} + C(L)\Sigma_{\varepsilon}D^{n}(L)u_{t}^{n}.$$
(8)

where C(L) the Wold representation coefficients and Σ_{ε} is the covariance of ε_t

- $\triangleright u_t^f$ the fundamental structural shocks
- $ightharpoonup u_t^r$ the recoverable (but nonfundamental) shocks
- $ightharpoonup u_t^n$ of the nonrecoverable ones
- ▶ $Q^h(L)u_t^h$, for h = f, r, n, is the projection of ε_t onto u_{t-k}^h , with $k \ge 0$;
- ▶ $D^h(F)\varepsilon_t$ is the projection of u_t^h onto ε_{t+k} , with $k \ge 0$

Moreover, the following properties hold:

- (i) D^f and Q^f s.t $D^{f'}\Sigma_{\varepsilon}D^f=Q^{f'}\Sigma_{\varepsilon}^{-1}Q^f=I_{q_f}$, for q_f fundamental shocks;
- (ii) $D^r(L)$ and $Q^r(L)$ s.t. $D^{r'}(F)\Sigma_{\varepsilon}D^r(L) = Q^{r'}(F)\Sigma_{\varepsilon}^{-1}Q^r(L) = I_{q_r}$, for q_r recoverable shocks

(

8/30

Identification

A general IV

The Instrument

The researcher can observe the proxy \tilde{z}_t , following the relation

$$\tilde{z}_t = \beta(L)\tilde{z}_{t-1} + \mu'(L)x_{t-1} + \underbrace{\alpha u_{it} + w_t}_{z_t}, \tag{9}$$

where w_t is an error orthogonal to $u_{j,t-k}$, j=1,...,q, for any integer k and to z_{t-k},x_{t-k} , $k \ge 0$, and $\beta(L)$, $\mu(L)$ are rational functions in the lag operator L

► We consider the 'residual'

$$z_t = \alpha u_{it} + w_t. \tag{10}$$

© : 9/30

The IRFs and the shock

Consider the projection of ε_t onto the present and past of the proxy:

$$\varepsilon_t = \psi(L)z_t + e_t. \tag{11}$$

Proposition – Relative IRFs

The coefficients of the projection (11) are related to $q_i(L)$ by the equation

$$\psi(L)\sigma_z^2 = q_i(L)\alpha \tag{12}$$

Hence the impulse-response functions fulfil the relation

$$b_i(L)\alpha = C(L)\psi(L)\sigma_z^2 \tag{13}$$

• : 10/30

The IRFs and the shock

▶ Invertible: $\varepsilon_t = \psi' z_t + e_t$, and IRFs:

$$b_i(L) = \frac{C(L)\psi}{\sqrt{\psi'\widehat{\Sigma}_{\varepsilon}^{-1}\psi}}$$
 (14)

Recoverable: $\varepsilon_t = \psi(L)z_t + e_t$, and IRFs:

$$b_i(L) = \frac{C(L)\psi(L)}{\sqrt{\sum_{k=0}^{\infty} \psi_k' \sum_{\varepsilon}^{-1} \psi_k}}$$
 (15)

▶ Non-Recoverable Upper and the lower bounds of α^2 (Plagborg-Møller and Wolf, 2022)

$$\alpha^{2} \leq \sigma_{z}^{2} = \overline{\alpha}^{2}$$

$$\alpha^{2} \geq \alpha^{2} \sup_{\theta \in (0, \pi]} R_{r}^{2}(\theta) = \sigma_{z}^{4} \sup_{\theta \in (0, \pi]} \psi'(e^{j\theta}) \Sigma_{\varepsilon}^{-1} \psi(e^{-j\theta}).$$
(16)

9 :

Variance and historical decompositions

- Historical decomposition is easy once the shock is identified
- Variance is difficult...
 - ▶ The standard forecast error variance decomposition (FVD) only for invertible models
 - ... one cannot estimate the denominator without estimating the whole structural model
 - ▶ Plagborg-Møller and Wolf (2022): denominator with the forecast error variance (FVR)
 - Alternative: integral of the spectral density over a frequency band (VD)

$$\hat{c}_{h}(\theta_{1},\theta_{2}) = \frac{\int_{\theta_{1}}^{\theta_{2}} \hat{b}_{ih}(e^{-j\theta}) \hat{b}_{ih}(e^{j\theta}) d\theta}{\int_{\theta_{1}}^{\theta^{2}} \widehat{S}_{h}(\theta) d\theta}.$$
(17)

© : 12/30

Testing for recoverability and invertibility

► Recoverability:

$$z_t = \delta'(F)\varepsilon_t + \nu_t \tag{18}$$

- ▶ If recoverable $\hat{u}_{it} = \hat{\delta}(F)\hat{\epsilon}_t$ (intuition: Plagborg-Møller and Wolf, 2022)
- ▶ Ljung-Box Q-test to the estimated projection $\hat{\delta}(F)\hat{\epsilon}_t$
- $ightharpoonup H_0$ is recoverability (serial uncorrelation) vs H_1 nonrecoverability (serial correlation)

► Invertibility:

- ▶ If invertible $\delta_k = 0$ for all positive k
- ▶ standard *F*-test for the joint significance of the coefficients of the leads in Eq. (18)
- \blacktriangleright test H_0 of fundamentalness vs H_1 nonfundamentalness
- ▶ If not invertibility, the degree of fundamentalness is

$$\hat{\mathcal{R}}_{\scriptscriptstyle f}^2 = \hat{\delta}_0' \widehat{\Sigma}_{arepsilon} \hat{\delta}_0 / \sum_{k=0}^r \hat{\delta}_k' \widehat{\Sigma}_{arepsilon} \hat{\delta}_k.$$

© : 13/30

Identification in Practice

IV Identification in practice

1. Regress \tilde{z}_t onto its lags and a set of regressors x_t , to get z_t

$$\tilde{\mathbf{z}}_{t} = \beta(\mathbf{L})\tilde{\mathbf{z}}_{t-1} + \mu'(\mathbf{L})\mathbf{x}_{t-1} + \alpha \mathbf{u}_{it} + \mathbf{z}_{t}$$
(19)

If the F-test does not reject the null $H_0: eta(L)=0$ & $\mu'(L)=0$, step 1 can be skipped

- 2. Estimate a VAR(p) with OLS to obtain $\widehat{A}(L)$, $\widehat{C}(L) = \widehat{A}(L)^{-1}$, $\widehat{\varepsilon}_t$ and $\widehat{\Sigma}_{\varepsilon}$
- 3. Regress \hat{z}_t on the current value and the first r leads of the Wold residuals:

$$\hat{z}_t = \sum_{k=0}^r \hat{\delta}_k' \hat{\hat{\varepsilon}}_{t+k} + \hat{v}_t = \hat{\delta}(F) \hat{\hat{\varepsilon}}_t + \hat{v}_t$$

Save the fitted value of the above regression, let us call it $\hat{\eta}_t$ Test for invertibility

© : 14/30

IV Identification in practice

4. **Invertible shock**: Estimate δ and the unit-variance shock. Estimate

$$\varepsilon_t = \psi' z_t + e_t$$

and estimate IRFs according to (14). Estimate the variance decomposition

- 4'. **Invertibility is rejected**: Recoverability test
- 5. Recoverable shock: Estimate the unit-variance shock according. Estimate

$$\varepsilon_t = \psi(L)z_t + e_t$$

and IRFs according to (15). Estimate the variance decomposition

- 5'. Nonrecoverable shock:
 - ▶ Either amend the VAR specification and repeat steps 2-4, or
 - Estimate

$$\varepsilon_t = \psi' z_t + e_t$$

Estimate lower and upper bounds according and the corresponding variance contributions

9 : 15/30

A Simulated Economy with Fiscal Foresight

- ▶ Leeper et al. (2013) RBC model with log preferences and inelastic labor supply
- ▶ Two iid shocks: technology, $u_{a,t}$, and tax $u_{\tau,t}$

Tax shocks are announced before implementation: fiscal foresight

▶ In deviations from the SS capital accumulation is

$$k_t = \alpha k_{t-1} + a_t - \kappa \sum_{i=0}^{\infty} \theta^i E_t \tau_{t+i+1}$$
 (20)

© : 16/30

► Equilibrium MA representation for capital and taxes:

$$\begin{pmatrix} \tau_t \\ k_t \end{pmatrix} = \begin{pmatrix} L^2 & 0 \\ \frac{-\kappa(L+\theta)}{1-\alpha I} & \frac{1}{1-\alpha I} \end{pmatrix} \begin{pmatrix} u_{\tau,t} \\ u_{a,t} \end{pmatrix} = B(L)u_t.$$
 (21)

- Nonfundamental shocks (matrix vanishes for L=0)
- ► They are recoverable! (The system is square)
- ▶ Tax shock is equal to tax two periods ahead: $u_{\tau,t} = \tau_{t+2}$

© : 17/30

- ► 1000 simulations T=240
- ► IV simulated as

$$\tilde{z}_t = u_{\tau,t} + 0.5z_{t-1} + 0.4k_{t-1} - 0.6\tau_{t-1} + v_t,$$

where $v_t \sim iid \, \mathcal{N}(0,1)$

▶ For each dataset, we test for invertibility and recoverability, and estimate the tax shock

$$p = m = 2$$
 $r = 0$ $p = m = 2$ $r = 4$

- ► Invertibility is correctly rejected in all cases
- ▶ Recoverability is (wrongly) rejected at the 5% level in 10% of the cases (test is oversized)

9 : 18/30

9 : 19/30

A comparison with the Internal-Instrument SVAR

- ► Same model, same IV
- ▶ 1000 simulations T=240
- ▶ The instrument is preliminarily 'cleaned' by setting $x_t = y_t$ and the number of lags m according to the BIC
- ▶ For the Internal-Instrument method, VAR for the vector $(\tilde{z}_t \ y_t')'$
- Estimation error measured as

$$100 \times \frac{\sum_{h=1}^{n} \sum_{k=0}^{K} (\hat{\mu}_{hk} - \mu_{hk})^{2}}{\sum_{h=1}^{n} \sum_{k=0}^{K} \mu_{hk}^{2}}.$$
 (22)

sum of the squared errors divided by the sum of the squared coefficients of the true IRFs

 \circ : 20/30

A comparison with the Internal-Instrument SVAR

		External IV						
VAR order	Internal IV	r = BIC	r = 3	r = 4	r = 5	r = 6	r = 7	
ho=1	410.8	4.3	4.3	5.0	6.4	7.9	9.4	
p = 2	34.8	5.2	5.2	5.9	6.4	7.9	9.4	
p = 3	7.6	6.0	6.0	6.8	7.3	8.0	9.5	
p = 4	9.5	7.1	7.1	7.8	8.4	9.1	9.6	
p = 5	11.2	8.0	8.0	8.8	9.3	10.0	10.6	
p = 6	12.9	8.9	8.9	9.6	10.2	10.9	11.5	
p = BIC	7.6	4.3						

21/30

A comparison with the Internal-Instrument SVAR

- **▶** 3 dynamic relations:
 - ► the IV equation
 - ▶ the VAR model
 - the equation linking VAR residuals and the proxy
- ▶ Internal IV approach: they are all fixed at the same lag order
- ► External-Instrument: they can be independently set optimally

 Θ : 22/30

Monetary policy shocks

Monthly VAR and High Frequency IV

- ► **Specification I**: 1-year gov't bond rate, IP and CPI
- ▶ Specification II: Specification I + Gilchrist and Zakrajšek (2012)'s excess bond premium
- ► Specification III: Specification II + mortgage spread and the commercial paper spread CPI and IP in differences
- ► Samples: 1983:1–2008:12 (robustness 1979:7/1987:8/1990:1 2012:6/2019:6)
- ► IV: Fed Funds futures (FF4) surprises
 - ... likely to capture both conventional shocks and forward guidance
 - 'Clean' the IV onto its lags and 6 lags variables of Specification I

© : 23/30

Fundamentalness and recoverability

Number of leads r					Number of leads r								
	r = 4	r = 5	r = 6	r = 7	r = 8	r = 9		r = 4	r = 5	r = 6	r = 7	r = 8	r = 9
Specification I						$Specification \ I$							
p = 6	0.008	0.028	0.002	0.003	0.001	0.001	p = 6	0.619	0.662	0.251	0.469	0.037	0.060
p = 9	0.016	0.051	0.003	0.003	0.002	0.001	p = 9	0.350	0.571	0.114	0.435	0.050	0.042
p = 12	0.011	0.045	0.003	0.002	0.001	0.000	p = 12	0.880	0.944	0.324	0.820	0.466	0.285
Specification II				Specification II									
p = 6	0.080	0.195	0.027	0.001	0.000	0.000	p = 6	0.441	0.473	0.308	0.777	0.394	0.357
p = 9	0.180	0.351	0.034	0.002	0.000	0.000	p = 9	0.119	0.186	0.104	0.517	0.222	0.193
p = 12	0.221	0.457	0.059	0.003	0.000	0.000	p = 12	0.472	0.558	0.269	0.913	0.701	0.575
Specifica	tion III						Specific a	tion III					
p = 6	0.060	0.184	0.089	0.003	0.001	0.002	p = 6	0.034	0.315	0.446	0.608	0.738	0.546
p = 9	0.184	0.362	0.220	0.020	0.002	0.003	p = 9	0.005	0.064	0.148	0.046	0.391	0.103
p = 12	0.215	0.353	0.250	0.060	0.031	0.027	p = 12	0.032	0.037	0.065	0.057	0.343	0.022

(a) Fundamentalness test

(b) Recoverability test

© : 24/30

Small VAR specification: Monetary policy shocks

Figure 1: VAR results: Specification I, p = 12, GK instrument. Top panels: estimated response functions with r = 0 (standard method). Bottom panels: estimated response functions with our proposed method r = 6. Black line: point estimate. Grey area: 68% confidence bands.

9 :

Medium VAR specifications: Monetary policy shocks

Figure 2: Red line: point estimates for Specification III; blue line: point estimates for Specification II; black line: point estimates for Specification I. Top panels: estimated response functions with p = 12, r = 0 (standard method). Bottom panels: estimated response functions with our proposed method, p = 12, r = 6. Pink shaded area: 68% confidence bands for Specification III.

© : 26/30

Variance decomposition

	Waves of periodicity						
	$2-18 \ months$	18-96 months	2+ months				
Specification I	1						
CPI inflation	19.2	27.6	20.8				
	(13.5-29.1)	(12.8-64.2)	(16.2 - 35.1)				
IP growth	27.7	33.8	28.3				
	(19.1 - 36.4)	(13.1—55.4)	(20.0 - 37.6)				
Specification II							
CPI inflation	12.3	12.9	13.2				
	(10.4-23.1)	(9.7 - 45.1)	(13.4-26.8)				
IP growth	20.3	29.5	22.5				
	(15.8—28.2)	(11.4—51.5)	(16.7 - 31.3)				
Specification III							
CPI inflation	12.5	10.3	12.5				
	(10.2 - 19.5)	(6.9 - 34.2)	(11.2-21.5)				
IP growth	16.1	5.2	13.0				
	(12.2—22.2)	(4.2—22.0)	(11.2—20.7)				

Table 1: Percentage of variance accounted for by the monetary policy shock, for waves of periodicity 2-18 months (short run), 18-96 months (business cycle), 2+ months (overall variance). 68% confidence bands in brackets

9 : 27/30

Variance decomposition

		VD				
	impact	3 months	6 months	12 months	24 months	2+ months
CPI inflation						
Specification I	0.5	7.2	15.3	18.4	20.7	20.8
Specification II	0.2	4.7	9.1	13.3	13.4	13.2
Specification III	0.3	5.6	7.4	12.5	12.4	12.5
CPI index in leve	ls					
Specification I	0.5	4.2	9.9	20.0	21.5	
Specification II	0.2	2.6	5.3	13.7	22.5	
Specification III	0.3	4.4	7.1	13.8	18.5	

Table 2: Percentage of variance of CPI inflation and prices accounted for by the monetary policy shock, according to the FVR measure of Plagborg-Møller and Wolf (2022), on impact and at 3,6, 12, 24 months horizons.

 $oldsymbol{\circ}$:

Variance decomposition – Subsamples

Time span	VD: $2-18$ months	FVR: horizon 24 months		
1983:1–2008:12	10.4	22.0	16.1	15.5
1990:1–2012:6	6.3	15.5	8.0	8.1
1987:1–2008:12	7.3	15.4	11.3	10.6
1983:1–2012:6	10.0	24.6	12.7	12.8
1979:7–2012:6	17.2	19.3	17.4	17.5
1979:7–2019:6*	15.7	18.2	15.3	15.1

Table 3: Variance decomposition of inflation for different time spans, Specification IV: FFR, CPI inflation, IP growth, EBP. VD: percentage of inflation variance accounted for by the monetary policy shock, for waves of periodicity 2-18 months (short run), 18-96 months (business cycle), 2+ months (overall variance). FVR: percentage of forecast error variance of inflation accounted for by the monetary policy shock at the 2-year horizon. For the sample 1979:7–2019:6 in place of the EBP series we use three financial variables: the 10-year treasury bond rate, the BAA corporate bond yield and the S&P500 stock price index.

Conclusions

- ▶ New estimation procedure for structural VARs with an external instrument
- ► Test for invertibility and a test for recoverability
- ► The method works well in simulation
- ► HFI IV policy shocks are not invertible but recoverable
- ► Standard method produces puzzling results ...
- ▶ ... new procedure results in line with textbook effects
- ▶ Variance decomposition indicates that monetary policy has sizeable effects

9 :