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Motivation

Fed Chair Janet Yellen: large-scale asset purchases December, 2014, Press Conference

...we’re reminding the public that we continue to hold a large stock of assets,
and that is tending to push down term premiums in longer-term yields.

Fed Chair Ben Bernanke: decomposition March, 2006, New York

To the extent that the decline in forward rates can be traced to a decline in the
term premium... the effect is financially stimulative and argues for greater monetary
policy restraint... However, if the behavior of long-term yields reflects current or
prospective economic conditions, the implications for policy may be quite
different-indeed, quite the opposite.

Fed Chair Alan Greenspan: conundrum June, 2005, Beijing

That improved performance has doubtless contributed to lower inflation-related
risk premiums, and the lowering of these premiums is reflected in significant declines
in nominal and real long-term rates. Although this explanation contributes to an
understanding of the past decade, I do not believe it explains the decline of
long-term interest rates over the past year despite rising short-term rates.
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Term premium: two models & two channels

I Gaussian ATSM:
I benchmark model
I time-varying term premia via price of risk

I Consumption-based models with recursive preferences
I time-varying term premia via SV

Goal of this paper: reconcile the two literatures
Literature
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Contributions

I Introduce a new structural model with both channels

I habit → time-varying price of risk
I SV → time-varying quantity of risk
I recursive preferences

I Our model has a reduced form of ATSM
I inherits tractability
I analytical bond prices

I Models with recursive preferences

I a model solution doesn’t always exist
I we provide conditions for its existence
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Empirical findings

I Our model matches empirical facts about bonds
I realistic time variation for term premium
I upward slope
I mimics time series of level and slope

I Habit is the key for term premium
I the price of expected inflation risk is the driving force
I it comoves with the expected inflation itself

I Models with SV but not habit produce counterfactual implications for bonds
I long run risk model
I downward slope
I term premia are economically insignificant, and negative
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Term premia
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Bottom line: habit is crucial to generate the patten in term premia
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Outline

1. Model

2. Estimation

3. Results

4. Model solution
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Model

Agent’s problem

Vt = max
Ct

[
(1− β)

(
Ct

Ht

)1−η

+ β
{
Et

[
V 1−γ
t+1

]} 1−η
1−γ

] 1
1−η

s.t. Wt+1 = (Wt − Ct)Rc,t+1

I Ht is habit

I consumption to habit ratio enters the utility as in Abel (1999)

I β is the time discount factor

I γ measures risk aversion

I ψ = 1
η is the elasticity of intertemporal substitution
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Stochastic discount factor

mt+1 = ϑ ln (β) + ϑ∆υt+1 − ηϑ∆ct+1 + (ϑ− 1) rc,t+1

I ∆υt+1 = (η − 1) ln
(

Ht+1

Ht

)
I ∆ct+1 = ln

(
Ct+1

Ct

)
I rc,t+1 = ln (Rc,t+1)

I ϑ = 1−γ
1−η

m$
t+1 = mt+1 − πt+1

I πt+1 is inflation

I nominal variables have $
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Dynamics of the state vector

∆ct = Z ′cgt , πt = Z ′πgt ,

where

gt+1 = µg + Φggt + Φghht + Σghεh,t+1 + Σg,tεg,t+1

Σg,tΣ
′
g,t = Σ0,gΣ′0,g +

H∑
i=1

Σi,gΣ′i,ghit

ht+1 ∼ NCG (νh,Φh,Σh)

εh,t+1 = ht+1 − Et [ht+1|ht ]

I Volatility follows non-central gamma process of Creal and Wu (JoE 2015)

I Zc and Zπ are selection vectors

I It’s a companion form, nesting long-run risk & VARMA.
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Long run risk

πt+1 = π̄t + επ1,t+1 επ1,t+1 ∼ N (0, ht,π1 )

∆ct+1 = c̄t + εc1,t+1 εc1,t+1 ∼ N (0, ht,c1 )

π̄t+1 = µπ + φππ̄t + φπ,c c̄t + επ2,t+1 επ2,t+1 ∼ N (0, ht,π2 )

c̄t+1 = µc + φc,ππ̄t + φc c̄t + σc,πεπ2,t+1 + εc2,t+1 εc2,t+1 ∼ N (0, ht,c2 )

where gt = (πt ,∆ct , π̄t , c̄t)
′

Difference from the literature: our volatility process guarantees positivity
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Habit

∆υt+1 = Λ1 (gt) + Λ2 (gt)
′
εg ,t+1

Λ2 (gt) = −ηΣ−1
g ,t (λ0 + λggt)

I Λ2 (gt) is the risk sensitivity function

I λg 6= 0⇒ price of risk moves with gt

I We allow inflation to be non-neutral

I Piazzesi and Schneider (2007) and Bansal and Shaliastovich (2013)
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Relation to Wachter(2006)

If η = γ, ∆ct+1 = c̄ + σcεc1,t+1, εg ,t+1 = εc1,t+1, and

Λ1t = (1− φ) (ῡ − υt)

Λ2t =
1

H̄

√
η + 2 (υt − ῡ) + ησc

then the SDF becomes the same as Wachter(2006).

The differences are

I Our model is affine

I analytical bond prices
I tractability

I We allow expected inflation risk to be priced

I It turns out to be the key driving factor
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Relation to preference shock

If we define Υt ≡ Hη−1
t , then the objective function becomes

Vt = max
Ct

[
(1− β) ΥtC

1−η
t + β

{
Et

[
V 1−γ

t+1

]} 1−η
1−γ

] 1
1−η

,

where Υt is the time preference. The macro literature specifies

∆υt+1 = Z ′υgt+1

I Zυ is a selection vector

I latent preference factor

I Albuquerque, Eichenbaum & Rebelo (2014), Schorfheide, Song & Yaron (2014)

I no time-varying price of risk
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Model solution

Log-linearize rc,t+1 via Campbell & Shiller (1989)

rc,t+1 ≈ κ0 + κ1pct+1 − pct + ∆ct+1

Real pricing kernel prices consumption good

1 = Et [exp (mt+1 + rc,t+1)] ,

Guess a solution

pct = D0 + D ′ggt + D ′hht

Solve the fixed point problem

p̄c = D0 (p̄c) + Dg (p̄c)′ µ̄g + Dh (p̄c)′ µ̄h

Plug the solution rc,t+1 into the SDF
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Sources of risk premia

Pricing kernel

m$
t+1 − Et

[
m$

t+1

]
= −λ$,′

g ,tΣg ,tεg ,t+1 − λ$,′
h Σh,t ε̃h,t+1

where

λ$
g ,t = γZc + Zπ ← power utility

+κ1
γ − η
1− η

Dg ← recursive preferences

+ϑη
(
Σg ,tΣ

′
g ,t

)−1
(λ0 + λggt) ← habit formation

The price of risk only varies with gt if λg 6= 0.

This channel remains the same if we shut SV.
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Sources of risk premia

Pricing kernel

m$
t+1 − Et

[
m$

t+1

]
= −λ$,′

g ,tΣg ,tεg ,t+1 − λ$,′
h Σh,t ε̃h,t+1

where

λ$
h = Σ′gh (γZc + Zπ) ← power utility

+κ1
(γ − η)

(1− η)

(
Σ′ghDg + Dh

)
← recursive preference

Prices of volatility risks are constant, as in the literature.
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Bond prices

P
$,(n)
t = Et

[
exp

(
m$

t+1

)
P

$,(n−1)
t+1

]
yields

y
$,(n)
t ≡ −1

n
ln
(
P

$,(n)
t

)
= a$

n + b$,′
n,ggt + b$,′

n,hht

where b$
n,g = − 1

n b̄
$
n,g and

b̄$
n,g = (Φg − ηϑλg ) ′︸ ︷︷ ︸

ΦQ
$

g

b̄$
n−1,g + b̄$

1,g

I The separation between Φg and ΦQ
$

g ≡ Φg − ηϑλg is the key

I Derive bond prices as in Creal & Wu (JoE 2015)

I Yields are affine functions of the state variables.

I Loadings are functions of (β, γ, ψ)
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Short rate

Consumption-inflation representation

r$
t = − log

(
P

$,(1)
t

)
= − ln (β) + ηEt [∆ct+1] + Et [πt+1]

−ηϑ(ηZc + Zπ)′(λ0 + λggt)

+Jensen’s ineq.

I Line 2: time discount, expected consumption and inflation

I Line 3: risk adjustment
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Term premium

tp
$,(n)
t = y

$,(n)
t − 1

n
Et

[
r$
t + r$

t+1 + . . . ,+r$
t+n−1

]

Difference between

I Buy an n-period bond

I Rolling over 1-period bond n times
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Outline
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Observation equation

Stack

y
$,(n)
t = a$

n + b$,′
n,ggt + b$,′

n,hht

for n = n1, n2, ..., nN , and allow pricing errors

y$
t = A + B$

ggt + B$
hht + et , et ∼ i.i.d. (0,Ω)

where A$ = (a$
n1
, . . . , a$

nN
)′, B$

g = (b$,′
g,n1

, ..., b$,′
g,nN )′,and B$

h = (b$,′
h,n1

, ..., b$,′
h,nN

)′.
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Least squares

Estimate θQ =
(
β, γ, ψ,ΦQ

$

g

)
by minimizing the pricing errors

min e′tΩ
−1et

I Some macro variables gt and ht are latent

I We approximate p(gt , ht , θ
P|m1:T ) by a Particle Gibbs sampler.
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Data

Monthly data from Feb. 1959 to June 2014

Yields

I Fama-Bliss zero-coupon yields from CRSP

I maturities: 3m, 1y, 2y, 3y, 4y, 5y

Inflation + Population

I FRED database at St. Louis FRB

I CPI inflation

I Civilian population over 16

Consumption

I U.S. Bureau of Economic Analysis

I non-durables + services
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Restrictions

I Four free parameters in λg
I λ0 = 0

I Σ0,g = 0

I Φh, Σh are diagonal

I Φgh = 0 and Σgh = 0

I Ω = ω2I
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Posterior distribution of macro factors

MCMC + particle filters → Particle Gibbs sampler.

For j = 1, . . . ,M

(g1:T , h0:T )(j) ∼ p
(
g1:T , h0:T |m1:T , θ

P,(j−1)
)

θP,(j) ∼ p
(
θP|m1:T , g

(j)
1:T , h

(j)
0:T

)
I Draw the state variables using the particle filter, see Andrieu, Doucet,

Holenstein (10).

I Use independence Metropolis-Hastings to draw the parameters θP.
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Least squares

min e ′tΩ
−1et

where

et = y$
t − A$

(
θQ, θ̂P

)
+ B$

g

(
θQ, θ̂P

)
ĝt + B$

h

(
θQ, θ̂P

)
ĥt
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Structural parameters

global local

Preference ψ 1.02 0.70
(0.03) (0.04)

β 0.9998 1.003
(0.0000) (0.000)

γ 6.75 1.73
(2.02) (0.16)

Habit ΦQ$

g

0.993 0.018 0.994 -0.015
(0.002) (0.007) (0.003) (0.005)

0.000 0.997 -0.005 0.996
(0.001) (0.000) (0.002) (0.000)

λg 1e−3×
0.05 -0.12 -0.007 0.030
0.00 0.18 0.001 -0.023

I Both global and local have similar implications for bonds.

I Key: ΦQ$

g are persistent

I Other structural parameters (γ, ψ, β) vary with different economic interpretations.
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Term premia in the benchmark model
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Comparison with GATSM
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I Left: our benchmark

I Right: GATSM
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Only quantity of risk
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I Left: with SV, no habit (long run risk model)

I Right: our benchmark

Long run risk model produces counterfactual term premia

I economically insignificant

I negative
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Only price of risk
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I Left: no SV, with habit

I Right: our benchmark

Bottom line: habit is crucial to generate the patten in term premia
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Inflation vs. consumption
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Habit
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Level and slope from benchmark model
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I Level: average across maturities

I Slope: 5 year - 3 month
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Slope

Unconditional slope has been the focus for the majority of the literature

3 12 24 36 48 60 level slope

data 4.94 5.33 5.54 5.72 5.88 5.98 5.57 1.04

SV w/ habit global 4.91 5.27 5.63 5.85 5.92 5.84 5.57 0.93
local 4.95 5.20 5.49 5.74 5.95 6.13 5.58 1.18

Gaussian w/ habit 5.08 5.25 5.47 5.69 5.89 6.09 5.58 1.01
SV w/o habit 5.64 5.63 5.61 5.59 5.57 5.56 5.60 -0.08

I SV seems to be flexible with gt and ht

I But there are more moments to match A, Bg , Bh

I There are only 3 free parameters (β, γ, ψ) to match all

I It’s difficult to match both the average level, and slope

Literature
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Model solution

Log-linearize rc,t+1 via Campbell & Shiller (1989)

rc,t+1 ≈ κ0 + κ1pct+1 − pct + ∆ct+1

Guess a solution

pct = D0 + D ′ggt + D ′hht

Solve the fixed point problem

p̄c = D0 (p̄c) + Dg (p̄c)′ µ̄g + Dh (p̄c)′ µ̄h

Plug the solution rc,t+1 into the SDF

Problem: a solution to the fixed point problem does not always exist.

Drew Creal (U Chicago) and Cynthia Wu (U Chicago & NBER) 39 / 51



Model Estimation Results Model solution

General case

Assumption

The parameters θ ∈ Θr must satisfy that for any real p̄c,

1. the loadings Dh(p̄c, θ) are real,

2. the expectation 1 = Et [exp (mt+1 + rc,t+1)] exists for Dh (p̄c, θ).

Proposition

Given Assumptions, there is a value β̄(ψ, γ, θP, θλ) such that if β < β̄,
then there exists a real solution for the fixed point problem.
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Sketch of proof

Define p̃c (p̄c) = D0 (p̄c) + Dg (p̄c)′ µ̄g + Dh (p̄c)′ µ̄h

The fixed point problem has a solution if p̄c − p̃c (p̄c) = 0

p̄c

-10 -5 0 5 10
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c
−

p̃
c

-10
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0
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c
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p̃
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10
β = 0.9996  ψ = 1.7  γ = 5
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Special case: Gaussian

Corollary

1. If Z∞′1 µ∗g ≤ 0 and β ≤ 1, then 1−γ
1−ψ > 0 guarantees the existence of a

solution.

2. If β ≤ 1, then there is a value γ̄(θP, θλ) such that γ̄−γ
1−ψ > 0

guarantees a solution.

3. For any ψ, β̄ is monotonic in γ: for ψ > 1, then d β̄
dγ > 0; for ψ < 1,

then d β̄
dγ < 0.
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Numerical illustration: part 2

γ
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SV: β  = 0.9998

I Gaussian: γ̄ = 146.5

I benchmark: for ψ = 0.97,γ < 4.8

I benchmark: for ψ = 0.52,γ < 6.9
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Numerical illustration: part 3

γ

50 100 150 200

β

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1
Gaussian: ψ = 0.7

feasible
infeasible

γ

50 100 150 200

β

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
SV: ψ = 0.7

I Gaussian: for γ = 244, β < 0.9996

I benchmark: for γ = 244,β < 0.93
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What we have learned

I A small γ might not mark the success of a model, but simply to
satisfy the constraint

I The separation of regions might cause numerical problems for
estimation, frequentist or Bayesian

I SV models encounter more problems
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Model Estimation Results Model solution

Conclusion

I Build a new structural model with two forces for term premia
I habit → time-varying prices of risk
I SV → time-varying quantity of risk

I Empirical results:
I Our model

I captures realistic dynamics for risk premia
I upward slope

I Habit is the driving force for term premia
I the price of expected inflation risk is the key, which comoves with the

expected inflation itself

I Models with SV but not habit produce counterfactual implications
I downward slope
I term premia are economically insignificant, and negative

I Provide conditions guaranteeing a solution for models with recursive
preferences
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Comparison with estimation in the literature

ΦQ$

g ≡ Φg − ηϑλg

I Dynamics of macro variables: Φg

I Cross section of yields: ΦQ$

g

I Term premia: the difference between P and Q

In models without habit, Φg = ΦQ$

g

I If we extract macro dynamics from macro data (ours), then
I Macro factors retain their interpretation
I Φg is estimated from the macro dynamics
I and determines the slope is downward

I If we extract macro dynamics primarily from yields (literature), then

I ΦQg is estimated from the cross section of yields
I and then determines the dynamics of the factors
I macro factors mimic level, slope and curvature of yields

Habit allows Φg 6= ΦQ
g
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Macro factors and yields

Regression R2s of macro factors on yields

our estimates inversion
w/o p.e w/ p.e.

expected inflation 57% 100% 98%
expeted growth 31% 100% 96%
expected inflation vol 48% 100% 36%
expected growth vol 31% 100% 72%

Back
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