Bond Risk Premia in Consumption-based Models

Drew D. Creal Chicago Booth Jing Cynthia Wu Chicago Booth & NBER

Motivation

Fed Chair Janet Yellen: large-scale asset purchases December, 2014, Press Conference

...we're reminding the public that we continue to hold a large stock of assets, and that is tending to push down **term premiums** in longer-term yields.

Fed Chair Ben Bernanke: decomposition March, 2006, New York

To the extent that the decline in forward rates can be traced to a decline in the term premium... the effect is financially stimulative and argues for greater monetary policy restraint... However, if the behavior of long-term yields reflects current or prospective economic conditions, the implications for policy may be quite different-indeed, quite the opposite.

Fed Chair Alan Greenspan: conundrum June, 2005, Beijing

That improved performance has doubtless contributed to lower inflation-related risk premiums, and the lowering of these premiums is reflected in significant declines in nominal and real long-term rates. Although this explanation contributes to an understanding of the past decade, I do not believe it explains the decline of long-term interest rates over the past year despite rising short-term rates.

Term premium: two models & two channels

- Gaussian ATSM:
 - benchmark model
 - time-varying term premia via price of risk
- Consumption-based models with recursive preferences
 - time-varying term premia via SV

Goal of this paper: reconcile the two literatures

▶ Literature

Contributions

- ▶ Introduce a new structural model with both channels
 - $\blacktriangleright \ \, \mathsf{habit} \to \mathsf{time}\text{-}\mathsf{varying} \,\, \mathsf{price} \,\, \mathsf{of} \,\, \mathsf{risk}$
 - $\blacktriangleright \ \mathsf{SV} \to \mathsf{time}\text{-}\mathsf{varying} \ \mathsf{quantity} \ \mathsf{of} \ \mathsf{risk}$
 - recursive preferences
- Our model has a reduced form of ATSM
 - inherits tractability
 - analytical bond prices
- Models with recursive preferences
 - a model solution doesn't always exist
 - we provide conditions for its existence

Empirical findings

- Our model matches empirical facts about bonds
 - realistic time variation for term premium
 - upward slope
 - mimics time series of level and slope
- Habit is the key for term premium
 - the price of expected inflation risk is the driving force
 - it comoves with the expected inflation itself
- Models with SV but not habit produce counterfactual implications for bonds
 - long run risk model
 - downward slope
 - term premia are economically insignificant, and negative

Term premia

Bottom line: habit is crucial to generate the patten in term premia

Outline

- 1. Model
- 2. Estimation

- 3. Results
- 4. Model solution

Model

Agent's problem

$$\begin{aligned} V_t &= \max_{C_t} \left[(1 - \beta) \left(\frac{C_t}{H_t} \right)^{1 - \eta} + \beta \left\{ \mathbf{E}_t \left[V_{t+1}^{1 - \gamma} \right] \right\}^{\frac{1 - \eta}{1 - \gamma}} \right]^{\frac{1}{1 - \eta}} \\ \text{s.t.} \quad W_{t+1} &= (W_t - C_t) \, R_{c, t+1} \end{aligned}$$

- $ightharpoonup H_t$ is habit
 - consumption to habit ratio enters the utility as in Abel (1999)
- β is the time discount factor
- $ightharpoonup \gamma$ measures risk aversion
- $ightharpoonup \psi = rac{1}{\eta}$ is the elasticity of intertemporal substitution

Stochastic discount factor

$$m_{t+1} = \vartheta \ln (\beta) + \vartheta \Delta v_{t+1} - \eta \vartheta \Delta c_{t+1} + (\vartheta - 1) r_{c,t+1}$$

- $\qquad \qquad r_{c,t+1} = \ln \left(R_{c,t+1} \right)$
- $\vartheta = \frac{1-\gamma}{1-\eta}$

Stochastic discount factor

$$m_{t+1} = \vartheta \ln (\beta) + \vartheta \Delta v_{t+1} - \eta \vartheta \Delta c_{t+1} + (\vartheta - 1) r_{c,t+1}$$

- $\qquad \qquad r_{c,t+1} = \ln \left(R_{c,t+1} \right)$
- $\vartheta = \frac{1-\gamma}{1-\eta}$

$$m_{t+1}^{\$} = m_{t+1} - \pi_{t+1}$$

- \blacktriangleright π_{t+1} is inflation
- nominal variables have \$

Dynamics of the state vector

$$\Delta c_t = Z_c' g_t, \quad \pi_t = Z_\pi' g_t,$$

where

$$g_{t+1} = \mu_g + \Phi_g g_t + \Phi_{gh} h_t + \Sigma_{gh} \varepsilon_{h,t+1} + \Sigma_{g,t} \varepsilon_{g,t+1}$$

$$\Sigma_{g,t} \Sigma'_{g,t} = \Sigma_{0,g} \Sigma'_{0,g} + \sum_{i=1}^{H} \Sigma_{i,g} \Sigma'_{i,g} h_{it}$$

$$h_{t+1} \sim \text{NCG}(\nu_h, \Phi_h, \Sigma_h)$$

$$\varepsilon_{h,t+1} = h_{t+1} - \text{E}_t [h_{t+1} | h_t]$$

- ▶ Volatility follows non-central gamma process of Creal and Wu (JoE 2015)
- \triangleright Z_c and Z_{π} are selection vectors
- ▶ It's a companion form, nesting long-run risk & VARMA.

Long run risk

where $g_t = (\pi_t, \Delta c_t, \bar{\pi}_t, \bar{c}_t)'$

$$\begin{array}{lll} \pi_{t+1} & = & \bar{\pi}_t + \varepsilon_{\pi_1,t+1} & \varepsilon_{\pi_1,t+1} \sim \mathsf{N}\left(0,h_{t,\pi_1}\right) \\ \Delta c_{t+1} & = & \bar{c}_t + \varepsilon_{c_1,t+1} & \varepsilon_{c_1,t+1} \sim \mathsf{N}\left(0,h_{t,c_1}\right) \\ \bar{\pi}_{t+1} & = & \mu_{\pi} + \phi_{\pi}\bar{\pi}_t + \phi_{\pi,c}\bar{c}_t + \varepsilon_{\pi_2,t+1} & \varepsilon_{\pi_2,t+1} \sim \mathsf{N}\left(0,h_{t,\pi_2}\right) \\ \bar{c}_{t+1} & = & \mu_{c} + \phi_{c,\pi}\bar{\pi}_t + \phi_{c}\bar{c}_t + \sigma_{c,\pi}\varepsilon_{\pi_2,t+1} + \varepsilon_{c_2,t+1} & \varepsilon_{c_2,t+1} \sim \mathsf{N}\left(0,h_{t,c_2}\right) \end{array}$$

Difference from the literature: our volatility process guarantees positivity

Habit

$$\Delta v_{t+1} = \Lambda_1(g_t) + \frac{\Lambda_2(g_t)'}{\varepsilon_{g,t+1}}$$

$$\Lambda_2(g_t) = -\eta \Sigma_{g,t}^{-1}(\lambda_0 + \lambda_g g_t)$$

- $ightharpoonup \Lambda_2\left(g_t\right)$ is the risk sensitivity function
- $\lambda_g \neq 0 \Rightarrow$ price of risk moves with g_t
- We allow inflation to be non-neutral
 - ▶ Piazzesi and Schneider (2007) and Bansal and Shaliastovich (2013)

Relation to Wachter(2006)

If
$$\eta=\gamma$$
, $\Delta c_{t+1}=ar{c}+\sigma_c arepsilon_{c_1,t+1}$, $arepsilon_{g,t+1}=arepsilon_{c_1,t+1}$, and
$$\Lambda_{1t} = (1-\phi)\left(ar{v}-v_t\right)$$

$$\Lambda_{2t} = \frac{1}{ar{H}}\sqrt{\eta+2\left(v_t-ar{v}\right)}+\eta\sigma_c$$

then the SDF becomes the same as Wachter(2006).

Relation to Wachter(2006)

If
$$\eta=\gamma$$
, $\Delta c_{t+1}=ar{c}+\sigma_c arepsilon_{c_1,t+1}$, $arepsilon_{g,t+1}=arepsilon_{c_1,t+1}$, and
$$\Lambda_{1t} = (1-\phi)\left(ar{v}-v_t\right)$$

$$\Lambda_{2t} = \frac{1}{ar{H}}\sqrt{\eta+2\left(v_t-ar{v}\right)}+\eta\sigma_c$$

then the SDF becomes the same as Wachter (2006).

The differences are

- Our model is affine
 - analytical bond prices
 - tractability
- We allow expected inflation risk to be priced
 - ▶ It turns out to be the key driving factor

Relation to preference shock

If we define $\Upsilon_t \equiv H_t^{\eta-1}$, then the objective function becomes

$$V_t = \max_{C_t} \left[(1 - \beta) \Upsilon_t C_t^{1-\eta} + \beta \left\{ \operatorname{E}_t \left[V_{t+1}^{1-\gamma} \right] \right\}^{\frac{1-\eta}{1-\gamma}} \right]^{\frac{1}{1-\eta}},$$

where Υ_t is the time preference. The macro literature specifies

$$\Delta v_{t+1} = Z'_{v} g_{t+1}$$

- Z_v is a selection vector
- latent preference factor
- ▶ Albuquerque, Eichenbaum & Rebelo (2014), Schorfheide, Song & Yaron (2014)
- no time-varying price of risk

Model solution

Log-linearize $r_{c,t+1}$ via Campbell & Shiller (1989)

$$r_{c,t+1} \approx \kappa_0 + \kappa_1 p c_{t+1} - p c_t + \Delta c_{t+1}$$

Real pricing kernel prices consumption good

$$1 = \mathrm{E}_{t} \left[\exp \left(m_{t+1} + r_{c,t+1} \right) \right],$$

Guess a solution

$$pc_t = D_0 + D_g'g_t + D_h'h_t$$

Solve the fixed point problem

$$\bar{pc} = D_0(\bar{pc}) + D_g(\bar{pc})'\bar{\mu}_g + D_h(\bar{pc})'\bar{\mu}_h$$

Plug the solution $r_{c,t+1}$ into the SDF

Sources of risk premia

Pricing kernel

$$m_{t+1}^{\$} - \mathrm{E}_t \left[m_{t+1}^{\$} \right] = -\lambda_{g,t}^{\$,\prime} \Sigma_{g,t} \varepsilon_{g,t+1} - \lambda_h^{\$,\prime} \Sigma_{h,t} \tilde{\varepsilon}_{h,t+1}$$

where

$$\lambda_{g,t}^{\$} = \gamma Z_c + Z_{\pi}$$
 \leftarrow power utility $+\kappa_1 \frac{\gamma - \eta}{1 - n} D_g$ \leftarrow recursive preferences

Sources of risk premia

Pricing kernel

$$m_{t+1}^{\$} - \mathrm{E}_t \left[m_{t+1}^{\$} \right] = -\lambda_{g,t}^{\$,\prime} \Sigma_{g,t} \varepsilon_{g,t+1} - \lambda_h^{\$,\prime} \Sigma_{h,t} \tilde{\varepsilon}_{h,t+1}$$

where

$$\begin{array}{lll} \lambda_{g,t}^{\$} & = & \gamma Z_c + Z_{\pi} & \leftarrow \text{power utility} \\ & & + \kappa_1 \frac{\gamma - \eta}{1 - \eta} D_g & \leftarrow \text{recursive preferences} \\ & & + \vartheta \eta \left(\Sigma_{g,t} \Sigma_{g,t}' \right)^{-1} \left(\lambda_0 + \lambda_g g_t \right) & \leftarrow \text{habit formation} \end{array}$$

The price of risk only varies with g_t if $\lambda_g \neq 0$.

This channel remains the same if we shut SV.

Sources of risk premia

Pricing kernel

$$m^{\$}_{t+1} - \mathbf{E}_t \left[m^{\$}_{t+1} \right] = -\lambda^{\$,\prime}_{g,t} \Sigma_{g,t} \varepsilon_{g,t+1} - \lambda^{\$,\prime}_h \Sigma_{h,t} \tilde{\varepsilon}_{h,t+1}$$

where

$$\lambda_h^{\$} = \Sigma'_{gh} (\gamma Z_c + Z_{\pi})$$
 \leftarrow power utility
$$+ \kappa_1 \frac{(\gamma - \eta)}{(1 - \eta)} (\Sigma'_{gh} D_g + D_h) \qquad \leftarrow \text{recursive preference}$$

Prices of volatility risks are constant, as in the literature.

Bond prices

$$P_t^{\$,(n)} = \mathrm{E}_t \left[\exp \left(m_{t+1}^{\$} \right) P_{t+1}^{\$,(n-1)} \right]$$

yields

$$y_t^{\$,(n)} \equiv -\frac{1}{n} \ln \left(P_t^{\$,(n)} \right) = a_n^{\$} + b_{n,g}^{\$,'} g_t + b_{n,h}^{\$,'} h_t$$

where $b_{n,g}^{\$}=-rac{1}{n}ar{b}_{n,g}^{\$}$ and

$$\bar{b}_{n,g}^{\$} = \underbrace{(\Phi_{g} - \eta \vartheta \lambda_{g})'}_{\Phi_{g}^{\$}} \bar{b}_{n-1,g}^{\$} + \bar{b}_{1,g}^{\$}$$

- ▶ The separation between Φ_g and $\Phi_g^{\mathbb{Q}^{\mathbf{S}}} \equiv \Phi_g \eta \vartheta \lambda_g$ is the key
- Derive bond prices as in Creal & Wu (JoE 2015)
- Yields are affine functions of the state variables.
- ▶ Loadings are functions of (β, γ, ψ)

Short rate

Consumption-inflation representation

$$r_t^{\$} = -\log\left(P_t^{\$,(1)}\right)$$

$$= -\ln(\beta) + \eta \mathbf{E}_t \left[\Delta c_{t+1}\right] + \mathbf{E}_t \left[\pi_{t+1}\right]$$

$$-\eta \vartheta(\eta Z_c + Z_\pi)'(\lambda_0 + \lambda_g g_t)$$
+ Jensen's ineq.

- ▶ Line 2: time discount, expected consumption and inflation
- ► Line 3: risk adjustment

Term premium

$$tp_t^{\$,(n)} = y_t^{\$,(n)} - \frac{1}{n} E_t \left[r_t^{\$} + r_{t+1}^{\$} + \dots, + r_{t+n-1}^{\$} \right]$$

Difference between

- Buy an n-period bond
- Rolling over 1-period bond n times

Outline

- 1. Model
- 2. Estimation

- 3. Results
- 4. Model solution

Observation equation

Stack

$$y_t^{\$,(n)} = a_n^{\$} + b_{n,g}^{\$,\prime} g_t + b_{n,h}^{\$,\prime} h_t$$

for $n = n_1, n_2, ..., n_N$, and allow pricing errors

$$y_t^{\$} = A + B_g^{\$} g_t + B_h^{\$} h_t + e_t, \quad e_t \sim \text{i.i.d.} (0, \Omega)$$

where
$$A^{\$}=(a_{n_1}^{\$},\ldots,a_{n_N}^{\$})',\ B_g^{\$}=(b_{g,n_1}^{\$,\prime},...,b_{g,n_N}^{\$,\prime})', \text{and } B_h^{\$}=(b_{h,n_1}^{\$,\prime},...,b_{h,n_N}^{\$,\prime})'.$$

Least squares

Estimate
$$heta^\mathbb{Q}=\left(eta,\gamma,\psi,\Phi_g^{\mathbb{Q}^{\mathbf{S}}}
ight)$$
 by minimizing the pricing errors
$$\min e_t'\Omega^{-1}e_t$$

- ▶ Some macro variables g_t and h_t are latent
- ▶ We approximate $p(g_t, h_t, \theta^{\mathbb{P}}|m_{1:T})$ by a Particle Gibbs sampler.

Data

Monthly data from Feb. 1959 to June 2014

Yields

- ► Fama-Bliss zero-coupon yields from CRSP
- maturities: 3m, 1y, 2y, 3y, 4y, 5y

Inflation + Population

- FRED database at St. Louis FRB
- CPI inflation
- Civilian population over 16

Consumption

- ▶ U.S. Bureau of Economic Analysis
- ▶ non-durables + services

Restrictions

- ▶ Four free parameters in λ_g
- ▶ $\lambda_0 = 0$
- ▶ $\Sigma_{0,g} = 0$
- ightharpoonup Φ_h, Σ_h are diagonal
- $\blacktriangleright \ \Phi_{gh} = 0 \ \text{and} \ \Sigma_{gh} = 0$
- $ightharpoonup \Omega = \omega^2 I$

Posterior distribution of macro factors

 $\mathsf{MCMC} + \mathsf{particle}$ filters $\to \mathsf{Particle}$ Gibbs sampler.

For
$$j = 1, \dots, M$$

$$(g_{1:T}, h_{0:T})^{(j)} \sim p\left(g_{1:T}, h_{0:T}|m_{1:T}, \theta^{\mathbb{P},(j-1)}\right)$$
 $\theta^{\mathbb{P},(j)} \sim p\left(\theta^{\mathbb{P}}|m_{1:T}, g_{1:T}^{(j)}, h_{0:T}^{(j)}\right)$

- ▶ Draw the state variables using the particle filter, see Andrieu, Doucet, Holenstein (10).
- lacktriangle Use independence Metropolis-Hastings to draw the parameters $heta^{\mathbb{P}}.$

Least squares

$$\min e'_t \Omega^{-1} e_t$$

where

$$e_{t} = y_{t}^{\$} - A^{\$} \left(\theta^{\mathbb{Q}}, \hat{\theta}^{\mathbb{P}} \right) + B_{g}^{\$} \left(\theta^{\mathbb{Q}}, \hat{\theta}^{\mathbb{P}} \right) \hat{g}_{t} + B_{h}^{\$} \left(\theta^{\mathbb{Q}}, \hat{\theta}^{\mathbb{P}} \right) \hat{h}_{t}$$

Structural parameters

-	global			local	
	6.020.			1000.	
Preference	ψ	1.02		0.70	
		(0.03)		(0.04)	
	β	0.9998		1.003	
		(0.0000)		(0.000)	
	γ	6.75		1.73	
		(2.02)		(0.16)	
Habit	$\Phi_g^{\mathbb{Q}^{\$}}$				
		0.993	0.018	0.994	-0.015
		(0.002)	(0.007)	(0.003)	(0.005)
		0.000	0.997	-0.005	0.996
		(0.001)	(0.000)	(0.002)	(0.000)
	λ_g	$1e^{-3}\times$			
	-	0.05	-0.12	-0.007	0.030
		0.00	0.18	0.001	-0.023

- Both global and local have similar implications for bonds.
- Key: $\Phi_g^{\mathbb{Q}^{\$}}$ are persistent
- lacktriangle Other structural parameters (γ,ψ,β) vary with different economic interpretations.

Outline

- 1. Model
- 2. Estimation

- 3. Results
- 4. Model solution

Term premia in the benchmark model

Comparison with GATSM

- Left: our benchmark
- Right: GATSM

Only quantity of risk

- ► Left: with SV, no habit (long run risk model)
- ► Right: our benchmark

Long run risk model produces counterfactual term premia

- economically insignificant
- negative

Only price of risk

Left: no SV, with habitRight: our benchmark

Bottom line: habit is crucial to generate the patten in term premia

Inflation vs. consumption

Habit

Level and slope from benchmark model

- ► Level: average across maturities
- ► Slope: 5 year 3 month

Slope

Unconditional slope has been the focus for the majority of the literature

	3	12	24	36	48	60 level	slope
data	4.94	5.33	5.54	5.72	5.88	5.98 5.57	1.04
SV w/ habit	global 4.91 local 4.95	5.27 5.20	5.63 5.49	5.85 5.74	5.92 5.95	5.84 5.57 6.13 5.58	0.93 1.18
Gaussian w/ habit SV w/o habit	5.08 5.64	5.25 5.63	5.47 5.61	5.69 5.59	5.89 5.57	6.09 5.58 5.56 5.60	1.01 -0.08

- SV seems to be flexible with g_t and h_t
- ▶ But there are more moments to match A, B_g , B_h
- ▶ There are only 3 free parameters (β, γ, ψ) to match all
- It's difficult to match both the average level, and slope

Outline

- 1. Model
- 2. Estimation

- 3. Results
- 4. Model solution

Model solution

Log-linearize $r_{c,t+1}$ via Campbell & Shiller (1989)

$$r_{c,t+1} \approx \kappa_0 + \kappa_1 p c_{t+1} - p c_t + \Delta c_{t+1}$$

Guess a solution

$$pc_t = D_0 + D_g'g_t + D_h'h_t$$

Solve the fixed point problem

$$\bar{pc} = D_0 (\bar{pc}) + D_g (\bar{pc})' \bar{\mu}_g + D_h (\bar{pc})' \bar{\mu}_h$$

Plug the solution $r_{c,t+1}$ into the SDF

Problem: a solution to the fixed point problem does not always exist.

General case

Assumption

The parameters $\theta \in \Theta^r$ must satisfy that for any real \bar{pc} ,

- 1. the loadings $D_h(\bar{pc}, \theta)$ are real,
- 2. the expectation $1 = E_t \left[\exp \left(m_{t+1} + r_{c,t+1} \right) \right]$ exists for $D_h \left(\bar{pc}, \theta \right)$.

Proposition

Given Assumptions, there is a value $\bar{\beta}(\psi, \gamma, \theta^{\mathbb{P}}, \theta^{\lambda})$ such that if $\beta < \bar{\beta}$, then there exists a real solution for the fixed point problem.

Sketch of proof

Define
$$\tilde{pc}\left(\bar{pc}\right) = D_0\left(\bar{pc}\right) + D_g\left(\bar{pc}\right)'\bar{\mu}_g + D_h\left(\bar{pc}\right)'\bar{\mu}_h$$

The fixed point problem has a solution if $\bar{pc} - \tilde{pc} \left(\bar{pc} \right) = 0$

Special case: Gaussian

Corollary

- 1. If $Z_1^{\infty\prime}\mu_g^* \leq 0$ and $\beta \leq 1$, then $\frac{1-\gamma}{1-\psi} > 0$ guarantees the existence of a solution.
- 2. If $\beta \leq 1$, then there is a value $\bar{\gamma}(\theta^{\mathbb{P}}, \theta^{\lambda})$ such that $\frac{\bar{\gamma} \gamma}{1 \psi} > 0$ guarantees a solution.
- 3. For any ψ , $\bar{\beta}$ is monotonic in γ : for $\psi > 1$, then $\frac{d\bar{\beta}}{d\gamma} > 0$; for $\psi < 1$, then $\frac{d\bar{\beta}}{d\gamma} < 0$.

Numerical illustration: part 2

- Gaussian: $\bar{\gamma} = 146.5$
- lacktriangle benchmark: for $\psi=$ 0.97, $\gamma<$ 4.8
- benchmark: for $\psi = 0.52, \gamma < 6.9$

Special case: Gaussian

Corollary

- 1. If $Z_1^{\infty\prime}\mu_g^* \leq 0$ and $\beta \leq 1$, then $\frac{1-\gamma}{1-\psi} > 0$ guarantees the existence of a solution.
- 2. If $\beta \leq 1$, then there is a value $\bar{\gamma}(\theta^{\mathbb{P}}, \theta^{\lambda})$ such that $\frac{\bar{\gamma} \gamma}{1 \psi} > 0$ guarantees a solution.
- 3. For any ψ , $\bar{\beta}$ is monotonic in γ : for $\psi > 1$, then $\frac{d\bar{\beta}}{d\gamma} > 0$; for $\psi < 1$, then $\frac{d\bar{\beta}}{d\gamma} < 0$.

Numerical illustration: part 3

- ▶ Gaussian: for $\gamma = 244$, $\beta < 0.9996$
- benchmark: for $\gamma = 244, \beta < 0.93$

What we have learned

- \blacktriangleright A small γ might not mark the success of a model, but simply to satisfy the constraint
- ► The separation of regions might cause numerical problems for estimation, frequentist or Bayesian
- SV models encounter more problems

Conclusion

- Build a new structural model with two forces for term premia
 - ightharpoonup habit ightharpoonup time-varying prices of risk
 - $\blacktriangleright \ \mathsf{SV} \to \mathsf{time}\text{-}\mathsf{varying} \ \mathsf{quantity} \ \mathsf{of} \ \mathsf{risk}$
- Empirical results:
 - Our model
 - captures realistic dynamics for risk premia
 - upward slope
 - Habit is the driving force for term premia
 - the price of expected inflation risk is the key, which comoves with the expected inflation itself
 - Models with SV but not habit produce counterfactual implications
 - downward slope
 - term premia are economically insignificant, and negative
- Provide conditions guaranteeing a solution for models with recursive preferences

Literature:

Consumption-based models

- recursive preferences: Piazzesi Schneider (07), Le Singleton (10)
- recursive preferences + SV: Bansal Yaron (04), Bansal Gallant Tauchen (07), Bansal Shaliastovich (13),
- ▶ habit formation: Wachter (06)
- ▶ recursive preferences + SV in ICAPM: Campbell Giglio et al. (14)
- ► recursive preferences + preference shocks: Albuquerque Eichenbaum Rebelo (14) Schorfheide Song Yaron (14)

DSGE models

- ▶ habit formation: Rudebusch Swanson (08)
- recursive preferences: Rudebusch Swanson (08), van Binsbergen et al. (12), Dew-Becker (14)
- ▶ solution methods: Caldara et al. (12)

Literature:

Term premium

▶ ATSM: Duffee (02), Ang Piazzesi (03), Wright (11), Bauer Rudebusch Wu (12)

Model solution

Hansen Scheinkman (12), Campbell Giglio et al. (14)

Comparison with estimation in the literature

$$\Phi_{g}^{\mathbb{Q}^{\$}} \equiv \Phi_{g} - \eta \vartheta \frac{\lambda_{g}}{\lambda_{g}}$$

- Dynamics of macro variables: Φ_g
- Cross section of yields: $\Phi_{\sigma}^{\mathbb{Q}^{\$}}$
- lacktriangle Term premia: the difference between ${\mathbb P}$ and ${\mathbb Q}$

In models without habit, $\Phi_g = \Phi_g^{\mathbb{Q}^\$}$

- ▶ If we extract macro dynamics from macro data (ours), then
 - Macro factors retain their interpretation
 - $ightharpoonup \Phi_g$ is estimated from the macro dynamics
 - ▶ and determines the slope is downward
- ▶ If we extract macro dynamics primarily from yields (*literature*), then
 - $lackbox{\Phi}_g^{\mathbb{Q}}$ is estimated from the cross section of yields
 - and then determines the dynamics of the factors
 - macro factors mimic level, slope and curvature of yields

Habit allows $\Phi_g \neq \Phi_g^{\mathbb{Q}}$

Macro factors and yields

Regression R^2 s of macro factors on yields

	our estimates	inversion	
		w/o p.e	w/ p.e.
expected inflation	57%	100%	98%
expeted growth	31%	100%	96%
expected inflation vol	48%	100%	36%
expected growth vol	31%	100%	72%

