Emission Trading and Overlapping Environmental Support: Installation-level Evidence from the EU ETS

Klaas Mulier Marten Ovaere Leo Stimpfle

Ghent University

National Bank of Belgium, October 3, 2024

- EU Emissions Trading System (EU ETS) creates carbon price
 - Market for tradeable emission permits with progressively tightening cap on annual emissions of large emitters
 - Extensively studied (Fabra and Reguant, 2014; Calel and Dechezleprêtre, 2016; Calel, 2020; Abrell et al., 2022; Dechezleprêtre et al., 2023; Colmer et al., 2024)

- ► EU Emissions Trading System (EU ETS) creates carbon price
 - Market for tradeable emission permits with progressively tightening cap on annual emissions of large emitters
 - Extensively studied (Fabra and Reguant, 2014; Calel and Dechezleprêtre, 2016; Calel, 2020; Abrell et al., 2022; Dechezleprêtre et al., 2023; Colmer et al., 2024)
- Increasing number of environmental support policies at national level
 - Evidence on effects of some policies in isolation (Martin et al., 2014; Abrell and Kosch, 2022; Ferrara and Giua, 2022; Gerster and Lamp, 2024; Basaglia et al., 2024)

- ► EU Emissions Trading System (EU ETS) creates carbon price
 - Market for tradeable emission permits with progressively tightening cap on annual emissions of large emitters
 - Extensively studied (Fabra and Reguant, 2014; Calel and Dechezleprêtre, 2016; Calel, 2020; Abrell et al., 2022; Dechezleprêtre et al., 2023; Colmer et al., 2024)
- ▶ Increasing number of environmental support policies at national level
 - Evidence on effects of some policies in isolation (Martin et al., 2014; Abrell and Kosch, 2022; Ferrara and Giua, 2022; Gerster and Lamp, 2024; Basaglia et al., 2024)

Interaction between EU ETS and overlapping national support understudied

- Simulation-based evidence (Anke et al., 2020; Delarue and Van den Bergh, 2016; Bruninx et al., 2020)
- Empirical evidence: this paper

"In the first half of 2017, we decided to retrofit our hard coal-fired power plants Eemshaven and Amer 9 for co-firing with biomass. The Dutch state approved subsidies of up to €2.6 billion for the two plants."

RWE AG, annual report 2017

"The [Memorandum of Understanding] states the commitment of ArcelorMittal and the Government of Spain to transition towards a decarbonised steel industry. [...] The Government of Spain is exploring regulatory instruments to support the industry in the transition process, such as compensation programmes for electricity-intensive industries, tools to promote improved energy efficiency [...]."

ArcelorMittal, press release 13/07/2021

national environmental support to EU ETS industries value of EU ETS emissions

Preview of results

Exploit regulatory tightening of the EU ETS in 2017 as quasi-experiment

- On average least efficient installations reduced emissions by 24% compared to most efficient installations after the tightening
- Considerable effect heterogeneity across sectors (36% in the power sector, 7% in the manufacturing sector)

Preview of results

Exploit regulatory tightening of the EU ETS in 2017 as quasi-experiment

- On average least efficient installations reduced emissions by 24% compared to most efficient installations after the tightening
- Considerable effect heterogeneity across sectors (36% in the power sector, 7% in the manufacturing sector)
- National environmental support interacts with tightening of the EU ETS
 - \blacktriangleright \pm 30 p.p. stronger emission reduction in countries with high levels of renewable energy support to power producers
 - \blacktriangleright \pm 10 p.p. weaker emission reduction in country-industries with high levels of compensation for energy-intensive manufacturing industries

1. The Effect of the EU ETS's Regulatory Tightening

2. Interactions with National Environmental Support

3. Conclusion

The Effect of the EU ETS's Regulatory Tightening

Empirical specification

Empirical specification

$$\mathsf{Emissions}_{it} = \beta_0 + \sum_{t \neq 2016} \beta_1^s \times \mathbb{1}_{t=s}^{\mathsf{year}} \times \mathbb{1}^{\mathsf{CPE}_i} + X_{it} + \lambda_i + \tau_t + \epsilon_{it}, \tag{1}$$

where

- ▶ 1^{CPE_i} carbon price exposure indicator (1 = high, 0 = low),
- ▶ $1_{t=s}^{\text{year}}$ year dummies,
- ▶ $\beta_1^s \approx$ percentage difference in emissions of high-exposed installations compared to low-exposed installations, relative to 2016 levels,
- > X_{it} , λ_i , τ_t control variables, installation and year fixed effects

The effect of the carbon price shock (full sample) [10]

The effect of the carbon price shock (power versus manufacturing) [100]

manufacturing
 power

- Common trends before the carbon price shock in both subsamples
- Average emission reductions of high-exposed compared to low-exposed installations:
 - ▶ 7% in manufacturing sector
 - ▶ 36% in power sector

Interactions with National Environmental Support

► EU State aid control generally prohibits aid, defined

"as an advantage in any form whatsoever conferred by national public authorities to undertakings on a selective basis" $^{\!\!\!1}$

¹https://competition-policy.ec.europa.eu/state-aid/overview_en

▶ EU State aid control generally prohibits aid, defined

"as an advantage in any form whatsoever conferred by national public authorities to undertakings on a selective basis" $^{\rm 1}$

But aid may be deemed compatible

"due to the, for example, presence of externalities or other market failures"²

¹https://competition-policy.ec.europa.eu/state-aid/overview_en ²https://competition-policy.ec.europa.eu/state-aid/scoreboard_en

▶ EU State aid control generally prohibits aid, defined

"as an advantage in any form whatsoever conferred by national public authorities to undertakings on a selective basis" $^{\rm 12}$

But aid may be deemed compatible

"due to the, for example, presence of externalities or other market failures"²

EU transparency rules require detailed reporting by member states on aid objective, type of instrument, support amounts, and beneficiaries

¹https://competition-policy.ec.europa.eu/state-aid/overview_en ²https://competition-policy.ec.europa.eu/state-aid/scoreboard_en

renewable energy support
 compensation for energy-intensive undertakings
 other

Main national environmental support categories examples

Renewable Energy Support

- incentivises production of electricity from renewable sources (wind, solar, biomass)
- e.g., feed-in-tariffs, renewable energy auctions, renewable energy certificates
- ▶ on average EUR 40–50 per tCO₂

Compensation for Energy-Intensive Undertakings

- financial support to shield against high energy costs
- e.g., direct transfers or energy tax reductions
- ▶ on average EUR 5–10 per tCO₂

Renewable Energy Support (power producers)

17 / 22

Renewable Energy Support (power producers)

Renewable Energy Support (power producers) [100]

Renewable Energy Support (power producers) [100]

high support • 0 • 1

Renewable Energy Support (power producers) [100]

Compensation for Energy-Intensive Undertakings (manufacturing) [10]

Compensation for Energy-Intensive Undertakings (manufacturing) [100]

high compensation • 0 • 1

Compensation for Energy-Intensive Undertakings (manufacturing) [100]

Account for time-varying country-specific or country-industry-specific shocks table

Account for time-varying country-specific or country-industry-specific shocks table

Continuous environmental support measure table

Account for time-varying country-specific or country-industry-specific shocks table

Continuous environmental support measure table

Alternative normalisation of national environmental support by NACE 2-digit GVA
 Table

Account for time-varying country-specific or country-industry-specific shocks table

- Continuous environmental support measure table
- Alternative normalisation of national environmental support by NACE 2-digit GVA
 table
- Alternative estimator of proportional average treatment effect table

Account for time-varying country-specific or country-industry-specific shocks table

- Continuous environmental support measure table
- Alternative normalisation of national environmental support by NACE 2-digit GVA
 table
- Alternative estimator of proportional average treatment effect table

Conclusion

Conclusion

- Carbon price shock led to significant emission reductions of high-exposed installations compared to low-exposed installations (24% on average)
 - ▶ 36% for power producing installations
 - ► 7% for manufacturing installations

Conclusion

- Carbon price shock led to significant emission reductions of high-exposed installations compared to low-exposed installations (24% on average)
 - ▶ 36% for power producing installations
 - ► 7% for manufacturing installations

Significant interactions with overlapping national environmental support

- \blacktriangleright \pm 30 p.p. stronger emission reductions in countries with high levels of renewable energy support to power producers
- \blacktriangleright \pm 10 p.p. weaker emission reductions in country-industries with high levels of compensation for energy-intensive manufacturing industries

Appendix

Free allocation methodology

Initial free allocation

$$F_i = \mathsf{Benchmark}_p^a \times \mathsf{CLEF}_p^a \times \mathsf{HAL}_i, \tag{2}$$

where HAL_i is the historical activity level (output in units of product p)³ Emission intensity

$$CPE_{i} = \frac{HEL_{i}}{HAL_{i}}$$
(3)
= Benchmark_{p}^{a} \times CLEF_{p}^{a} \times \frac{HEL_{i}}{F_{i}}, (4)

where HEL_i is the historical emission level (in tCO_2)

³https://eur-lex.europa.eu/eli/dec/2011/278/oj

Sample description

Sample	Full	Power	Manufacturing
Observations	53,662	15,131	38,531
Firms	3,033	727	2,356
Installations	4,609	1,283	3,326
NACE 4-digit industries	70	1	69
Activities	24	1	23
Countries	27	27	26
Annual installation-level emissions (tCO ₂)			
Average	289,099	656,414	144,855
Median	26,845	115,610	19,209
Standard deviation	1,182,877	2,023,869	516,179
Annual firm-level emissions (tCO ₂)			
Average	439,392	1,154,370	204,552
Median	27,103	148,284	19,054
Standard deviation	2,490,333	4,762,762	719,143

Empirical specifications

difference-in-differences

$$\mathsf{Emissions}_{it} = \beta_0 + X_{it} + \lambda_i + \tau_t + \epsilon_{it} \\ + \beta_1 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i}$$

► triple difference

$$\begin{aligned} \mathsf{Emissions}_{it} &= \beta_0 + X_{it} + \lambda_i + \tau_t + \epsilon_{it} \\ &+ \beta_1 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i} \\ &+ \beta_2 \times \mathsf{Post}_t \times \mathbb{1}^{\alpha}_{cj} \\ &+ \beta_3 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i} \times \mathbb{1}^{\alpha}_{cj} \end{aligned}$$

(5)

(6)

Examples of state aid cases **back**

renewable energy support

- SA.33134: "Green certificates for promoting electricity from renewable sources" (Romania)
- SA.34411: "SDE+" (Netherlands)
- SA.49918: "Multi-technology tender 2018-2019" (Denmark)
- compensation for energy-intensive undertakings
 - SA.34287: "Energy and CO2 tax reliefs" (Sweden)
 - SA.41381: "Relief from the EEG surcharge for companies in NACE sectors 25.50 and 25.61" (Germany)
 - SA.41981: "Relief from indirect CO2 costs in electricity in Lithuania" (Lithuania)

Environmental support intensity before and after the carbon price shock

renewable energy support

compensation for energy-intensive undertakings

Carbon price shock

	(1)	(2)	(3)
$Post_t \times \mathbb{1}^{CPE_i}$	-0.279***	-0.067***	-0.449***
	(0.031)	(0.017)	(0.051)
Sample	Full	Manufacturing	Power
Fixed effects	λ_i , τ^1_{tia}	λ_i , $ au_{tia}^1$	λ_i , τ^1_{tia}
Energy price controls	Yes	Yes	Yes
Cluster variable	Installation	Installation	Installation
Clusters	4,967	3,050	1,247
Observations	57,986	35,366	14,732
Pseudo R^2	0.962	0.981	0.939
RMSE	0.386	0.276	0.419

Renewable energy support **Lack**

	(1)	(2)
$Post_t \times \mathbb{1}^{CPE_i}$	-0.324***	-0.472***
-	(0.057)	(0.069)
$Post_t \times \mathbb{1}_{ci}^{res}$	0.086	
cj	(0.070)	
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}_{e^i}^{res}$	-0.485***	-0.395***
- Cj	(0.096)	(0.105)
Fixed effects	$\lambda_{i}, \tau^{1}_{tip}$	$\lambda_i, \tau^1_{tia}, \tau^2_{tc}$
Energy price controls	Yes	Yes
Cluster variable	Installation	Installation
Clusters	1,247	1,247
Observations	14,732	14,727
Pseudo R^2	0.941	0.945
RMSE	0.414	0.402

Compensation for energy-intensive undertakings – average annual emissions

Compensation for energy-intensive undertakings - carbon price exposure

Compensation for energy-intensive undertakings (back)

	(1)	(2)	(3)	(4)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.106***	-0.107***	-0.115***	-0.096***
	(0.025)	(0.025)	(0.023)	(0.026)
$Post_t imes \mathbb{1}_{cj}^{eiu}$	-0.051** (0.024)	-0.049** (0.023)	-0.031 (0.043)	
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}_{cj}^{eiu}$	0.101***	0.115***	0.133***	0.077**
	(0.037)	(0.037)	(0.030)	(0.032)
Fixed effects Energy price controls	$\lambda_i, \ au_t$ No	λ_i , $ au_{tja}^1$ No	λ_i , $ au_{tja}^1$, $ au_{tc}^2$ No	$\lambda_i, \ au_{tjac}^3 \ No$
Cluster variable	Installation	Installation	Installation	Installation
Clusters	3,109	3,047	3,047	2,879
Observations	36,059	35,339	35,339	33,273
Pseudo <i>R</i> ²	0.979	0.981	0.982	0.985
RMSE	0.283	0.275	0.266	0.251

Horse race

	(1)	(2)
$Post_t \times \mathbb{1}^{CPE_i}$	-0.086*** (0.026)	-0.416*** (0.060)
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}^{LSPeff}_{cj}$	-0.017 (0.048)	-0.246 (0.229)
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}^{LSP^{eiu}}_{cj}$	0.086*** (0.033)	
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}^{LSP^{res}_{cj}}$		-0.448*** (0.100)
$Post_t \times \mathbb{1}^{CPE_i} \times \mathbb{1}^{LSP^{rnd}_{cj}}$	-0.089 (0.069)	0.227 (0.260)
Sample	Manufacturing	Power
Cluster variable Clusters Observations	Installation 2,872 33,200	Installation 1,247 14,727
Pseudo <i>R</i> ² RMSE	0.985 0.251	0.945 0.402

Alternative fixed effects (back)

	(1)	(2)	(3)	(4)	(5)	(6)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.440***	-0.440***	-0.056***	-0.057***	-0.678***	-0.669***
	(0.060)	(0.037)	(0.018)	(0.018)	(0.081)	(0.053)
Sample	Full	Full	Manufacturing	Manufacturing	Power	Power
Fixed effects Energy price controls	λ_{f} , $ au_{tjac}^{3}$ Yes	$\lambda_i, \ au_{tjac}^3$ Yes	λ_{f} , $ au_{tjac}^{3}$ Yes	$\lambda_i, \ au_{tjac}^3$ Yes	λ_{f} , $ au_{tjac}^{3}$ Yes	$\lambda_{i}, \ au_{tjac}^{3}$ Yes
Cluster variable	Firm	Installation	Firm	Installation	Firm	Installation
Clusters	2,573	4,050	1,682	2,476	714	1,248
Observations	47,950	47,697	29,084	29,084	14,980	14,739
Pseudo <i>R</i> ²	0.811	0.963	0.900	0.980	0.736	0.945
RMSE	0.934	0.378	0.544	0.248	0.978	0.401

Continuous environmental support measure (back)

	(1)	(2)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.094***	-0.465***
	(0.019)	(0.076)
Post. $\times \overline{FSP}^{\alpha}$	-0.002**	
$10st_t \times 101 c_j$	(0.001)	
	(0.001)	
$Post_t imes \mathbb{1}^{CPE_i} imes \overline{ESP}_{ci}^{lpha}$	0.003**	-0.007***
,	(0.001)	(0.002)
Comula		Davian
Sample	Manufacturing	Power
Fixed offects) _1 _2	<u>۱</u> –2
Fixed effects	$\lambda_i, \tau_{tia}, \tau_{tc}$	$\lambda_i, \tau_{tia}, \tau_{tc}$
Energy price controls	$\lambda_i, au_{tja}^-, au_{tc}^-$ No	$\lambda_i, \ au_{tja}^{-}, \ au_{tc}^{-}$ Yes
Energy price controls	$\lambda_i, \tau_{ija}, \tau_{tc}$ No	$\lambda_i, \tau_{tja}, \tau_{tc}$ Yes
Energy price controls Cluster variable	$\lambda_i, \tau_{tja}, \tau_{tc}$ No Installation	$\lambda_i, \tau_{tja}, \tau_{tc}$ Yes
Cluster variable	$\lambda_i, \tau_{tja}, \tau_{tc}$ No Installation 2,746	$\lambda_i, \tau_{tja}, \tau_{tc}$ Yes Installation 1,229
Energy price controls Cluster variable Clusters Observations	$\lambda_{i}, \tau_{tja}, \tau_{tc}$ No Installation 2,746 32,365	$\lambda_i, \tau_{ija}, \tau_{tc}$ Yes Installation 1,229 14,533
Energy price controls Cluster variable Clusters Observations Pseudo <i>R</i> ²	$\lambda_i, \tau_{tja}, \tau_{tc}$ No Installation 2,746 32,365 0.983	$\lambda_i, \tau_{ija}, \tau_{ic}$ Yes Installation 1,229 14,533 0.945
Energy price controls Cluster variable Clusters Observations Pseudo <i>R</i> ² RMSE	$\chi_{i}, \tau_{tja}, \tau_{tc}$ No Installation 2,746 32,365 0.983 0.239	$\lambda_i, \tau_{ija}, \tau_{ic}$ Yes Installation 1,229 14,533 0.945 0.403

GVA-based support intensity indicator – renewable support Lack

	(1)	(2)	(3)	(4)
$Post_t \times \mathbb{1}^{CPE_i}$	-0.344***	-0.475***	-0.339***	-0.512***
	(0.068)	(0.074)	(0.061)	(0.066)
$Post_t imes \mathbb{1}_{cj}^{res}$	0.161* (0.085)		0.117 (0.071)	
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}_{cj}^{res}$	-0.381***	-0.510***	-0.305***	-0.345***
	(0.142)	(0.153)	(0.099)	(0.107)
Fixed effects Energy price controls	$\lambda_{f}, \ au_{tja}^{1}$ Yes	$\lambda_{f}, \ au_{tja}^{1}, \ au_{tc}^{2}$ Yes	$\lambda_i, \ au_{tja}^1$ Yes	$\lambda_i, au_{tja}^1, au_{tc}^2$ Yes
Cluster variable	Firm	Firm	Installation	Installation
Clusters	713	713	1,247	1,247
Observations	14,961	14,968	14,732	14,727
Pseudo <i>R</i> ²	0.728	0.733	0.939	0.945
RMSE	0.988	0.986	0.418	0.402

GVA-based support intensity indicator – compensation **Dack**

	(1)	(2)	(3)	(4)	(5)	(6)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.113***	-0.121***	-0.100***	-0.120***	-0.131***	-0.107***
	(0.037)	(0.034)	(0.037)	(0.036)	(0.032)	(0.037)
$Post_t imes \mathbb{1}_{cj}^{eiu}$	-0.043 (0.031)	0.035 (0.058)		-0.038 (0.031)	0.020 (0.059)	
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}_{cj}^{eiu}$	0.075*	0.083**	0.066	0.076*	0.087**	0.054
	(0.043)	(0.039)	(0.043)	(0.042)	(0.037)	(0.043)
Fixed effects	λ_{f} , $ au_{tja}^{1}$	λ_{f} , $ au_{tja}^{1}$, $ au_{tc}^{2}$	$\lambda_{f}, \ au_{tjac}^{3}$ No	λ_i , $ au_{tja}^1$	λ_i , $ au^1_{tja}$, $ au^2_{tc}$	λ_i , $ au_{tjac}^3$
Energy price controls	No	No		No	No	No
Cluster variable	Firm	Firm	Firm	Installation	Installation	Installation
Clusters	2,138	2,137	1,988	3,040	3,040	2,875
Observations	35,798	35,776	33,293	35,270	35,270	33,231
Pseudo <i>R</i> ²	0.902	0.903	0.899	0.981	0.982	0.985
RMSE	0.567	0.564	0.592	0.276	0.266	0.251

Estimation by OLS (back)

	(1)	(2)	(3)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.161***	-0.071***	-0.438***
	(0.028)	(0.021)	(0.068)
Sample	Full	Manufacturing	Power
Fixed effects Energy price controls	λ_i , $ au_{tja}^1$ Yes	$\lambda_i, \ au_{tja}^1$ Yes	λ_i , $ au_{tja}^1$ Yes
Cluster variable	Installation	Installation	Installation
Clusters	4,599	2,858	1,230
Observations	48,384	30,153	13,548
R^2	0.889	0.910	0.846
RMSE	0.748	0.542	0.998

Electricity price controls (back)

	(1)	(2)	(3)	(4)	(5)	(6)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.100***	-0.104***	-0.086***	-0.097***	-0.105***	-0.090***
	(0.024)	(0.021)	(0.025)	(0.023)	(0.021)	(0.026)
$Post_t imes \mathbb{1}_{cj}^{eiu}$	-0.064*** (0.024)	-0.024 (0.037)		-0.044** (0.021)	-0.027 (0.041)	
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}_{cj}^{eiu}$	0.113***	0.121***	0.092***	0.105***	0.119***	0.074**
	(0.037)	(0.031)	(0.033)	(0.034)	(0.028)	(0.032)
Fixed effects Energy price controls	λ_{f} , $ au_{tja}^{1}$ Yes	λ_{f} , $ au_{tja}^{1}$, $ au_{tc}^{2}$ Yes	$\lambda_{f},~ au_{tjac}^{3}$ Yes	$\lambda_i, \ au_{tja}^1$ Yes	$\lambda_i, au_{tja}^1, au_{tc}^2$ Yes	$\lambda_i, \ au_{tjac}^3$ Yes
Cluster variable	Firm	Firm	Firm	Installation	Installation	Installation
Clusters	2,143	2,143	1,991	3,047	3,047	2,879
Observations	35,845	35,845	33,335	35,339	35,339	33,273
Pseudo <i>R</i> ²	0.902	0.903	0.899	0.981	0.982	0.985
RMSE	0.567	0.564	0.592	0.275	0.266	0.251

References

References I

- Abrell, J., Cludius, J., Lehmann, S., Schleich, J., and Betz, R. (2022). Corporate Emissions-Trading Behaviour During the First Decade of the EU ETS. *Environmental and Resource Economics*, 83(1):47–83.
- Abrell, J. and Kosch, M. (2022). Cross-country spillovers of renewable energy promotion—The case of Germany. *Resource and Energy Economics*, 68:101293.
- Anke, C.-P., Hobbie, H., Schreiber, S., and Möst, D. (2020). Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies. *Energy Policy*, 144:111647.
- Basaglia, P., Isaksen, E., and Sato, M. (2024). Carbon pricing, compensation and competitiveness: Lessons from UK manufacturing. https://www.lse.ac.uk/granthaminstitute/publication/carbon-pricing-compensationand-competitiveness-lessons-from-uk-manufacturing/.
- Bruninx, K., Ovaere, M., and Delarue, E. (2020). The long-term impact of the market stability reserve on the EU emission trading system. *Energy Economics*, 89:104746.

References II

- Calel, R. (2020). Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade. *American Economic Journal: Economic Policy*, 12(3):170–201.
- Calel, R. and Dechezleprêtre, A. (2016). Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market. *The Review of Economics and Statistics*, 98(1):173–191.
- Colmer, J., Martin, R., Muûls, M., and Wagner, U. J. (2024). Does Pricing Carbon Mitigate Climate Change? Firm-Level Evidence from the European Union Emissions Trading System. *The Review of Economic Studies*, pages 1–36.
- Dechezleprêtre, A., Nachtigall, D., and Venmans, F. (2023). The joint impact of the European Union emissions trading system on carbon emissions and economic performance. *Journal of Environmental Economics and Management*, 118:102758.
- Delarue, E. and Van den Bergh, K. (2016). Carbon mitigation in the electric power sector under cap-and-trade and renewables policies. *Energy Policy*, 92:34–44.

References III

- Fabra, N. and Reguant, M. (2014). Pass-Through of Emissions Costs in Electricity Markets. *American Economic Review*, 104(9):2872–2899.
- Ferrara, A. R. and Giua, L. (2022). Indirect cost compensation under the EU ETS: A firm-level analysis. *Energy Policy*, 165:112989.
- Gerster, A. and Lamp, S. (2024). Energy Tax Exemptions and Industrial Production. *The Economic Journal*, page ueae048.
- Martin, R., de Preux, L. B., and Wagner, U. J. (2014). The impact of a carbon tax on manufacturing: Evidence from microdata. *Journal of Public Economics*, 117:1–14.