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Abstract

The purpose of this paper is to measure the potential impact of business-sector concentration on
economic capital for loan portfolios and to explore a tractable model for its measurement. The
empirical part evaluates the increase in economic capital in a multi-factor asset value model for
portfolios with increasing sector concentration. The sector composition is based on credit
information from the German central credit register. Finding that business sector concentration can
substantially increase economic capital, the theoretical part of the paper explores whether this risk
can be measured by a tractable model that avoids Monte Carlo simulations. We analyze a simplified
version of the analytic value-at-risk approximation developed by Pykhtin (2004), which only requires
risk parameters on a sector level. Sensitivity analyses with various input parameters show that the
analytic approximation formulae perform well in approximating economic capital for portfolios which
are homogeneous on a sector level in terms of PD and exposure size. Furthermore, we explore the
robustness of our results for portfolios which are heterogeneous in terms of these two
characteristics. We find that low granularity ceteris paribus causes the analytic approximation
formulae to underestimate economic capital, whereas heterogeneity in individual PDs causes
overestimation. Indicative results imply that in typical credit portfolios, PD heterogeneity will at least
compensate for the granularity effect. This suggests that the analytic approximations estimate

economic capital reasonably well and/or err on the conservative side.

JEL-code : G18, G21, C1.

Keywords:  sector concentration risk, economic capital
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Non Technical Summary

An unbalanced exposure distribution of a loan portfolio, either across regional or business sectors,
in generally increases the associated credit risk. If credit risk is measured by a single systematic
risk factor, sector concentration is usually not accounted for. The purpose of this paper is twofold.
The empirical part measures the potential impact of business-sector concentration on the economic
capital (or unexpected loss) of several loan portfolios. The sector composition of these portfolios is
based on information from the German central credit register (Millionenkreditmeldewesen) on the
sector composition of real bank portfolios. In this way it is ensured that our results are

representative of real banks.

The model used in the empirical part requires Monte Carlo simulations for the calculation of
economic capital, which can be noisy and time-consuming for the high-confidence levels typically
used for the calculation of economic capital for credit risk. Therefore, in the theoretical part of the
paper we explore a simpler, more tractable model for measuring portfolio risk which has a closed-
form solution for economic capital and only requires input parameters, in particular exposure size
and default probability, on a sector level. The model assumptions of PD homogeneity in every
sector and fully diversified idiosyncratic credit risk are indeed not met by real credit portfolios.
Indicative results nevertheless suggest that the analytic approximation still estimates economic

capital reasonably well for typical credit portfolios and/or errs on the conservative side.
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1. Introduction

The failure of not recognizing diversification within banks' credit portfolios was a key criticism of
the 1988 Basel Accord. The minimum regulatory capital requirements (Pillar 1) even in the internal
ratings based (IRB) approach of the Basel Framework of June 2004, however, still do not
differentiate between portfolios with different grades of diversification. Recognizing that banks
portfolios can exhibit credit risk concentrations, Basel |1 stipulates that this risk be addressed in the
supervisory review process (Pillar 2), thus creating a need for an appropriate methodology to

measure thisrisk.

Concentration risk in banks' credit portfolios arises either from an excessive exposure to certain
names (often referred to as name concentration or coarse granularity) or from an excessive
exposure to a single sector or to several highly correlated sectors (i.e. sector concentration). In the
past, financial regulation and previous research have focused mainly on the first aspect of
concentration risk." Therefore, in this paper our focus is on sector concentration risk, although
granularity is also analyzed. Sectors are defined in the following as business sectors. Sectors
defined by geographical regions are not considered in this paper but our methodology would still be
applicable in that case.

The critical role credit risk concentration has played in past bank failures has been documented in
the literature.? Therefore, the importance of prudently managing sectoral concentration risk in
banks' credit portfolios is generally well recognized. However, existing literature does not provide
much guidance on how to measure sectoral concentration risk. Consequently, whether particular
levels of concentration need to be trandated into an additional capita buffer remains an open

guestion.

This paper contributes to the literature in the following ways. First, in the empirical part, we
measure economic capital in a CreditMetrics-type multi-factor model and evaluate how important
the increase in economic capital is in a sequence of portfolios with increasing sector concentration.
The analysis is based on portfolios which were constructed from German central credit register data
on 2224 banks. The benchmark portfolio reflects the average business-sector distribution of the
banking system as some of the more concentrated portfolios mirror sector concentrations observed
in individual banks. Information on business-sector concentration of banks is not publicly available,
thus central credit registers represent unique sources of data on sector concentrations in existing
banks. Our emphasis on empirically observable sector concentrations is therefore an important

contribution.

1 See EU Directive 93/6/EEC, Joint Forum (1993) and Gordy (2003).
2 See, for example, BCBS (2004a).



We find that economic capital can substantially increase with sector concentration. Its increase from
a credit portfolio representing the average sector distribution of the German banking system to a

portfolio that is concentrated in a single sector can be as high as 50%.

Second, in the theoretical part we evaluate the accuracy of an analytic approximation for value-at-
risk (VaR) and economic capital (EC) which was proposed in Pykhtin (2004) and offers a tractable,
closed-form solution for the measurement of concentration risk. EC is defined as the difference
between the VaR and the expected loss of a credit portfolio. We have applied a simplified version
of the Pykhtin model which further reduces the computational burden by requiring the input
parameters exposure size and probability of default (PD) only on a sector level. Such a
methodology could be useful for risk managers and supervisors in search of robust, fit-for-purpose
tools to measure sector concentration in a bank’s loan portfolio. The model allows banks and
supervisors to approximate economic capital for loan portfolios without running computationally

intensive Monte Carlo simulations.

The methodological framework of the Pykhtin model builds on earlier work by Gordy (2003) and
Wilde (2001) on granularity adjustments in the asymptotic single risk factor (ASRF) model.
Whereas the granularity adjustment deals with an unbalanced exposure distribution across names,
the Pykhtin model offers a treatment for an unbalanced distribution across (correlated) sectors. EC
isgiven in closed form as the sum of the EC in a single risk factor model (in which the correlation
with the single systematic risk factor depends on the sector) and a multi-factor adjustment term. We
explore the approximation performance both before the multi-factor adjustment is applied and

afterwards which means we consider two approximation formulae.

We find that for portfolios with highly granular sectors and homogeneous PDs in every sector, both
analytic approximation formulae perform extremely well. Moreover, the multi-factor adjustment
term is relatively small, so that EC in the single risk factor model is already close to the true EC
values obtained by simulations. Our results hold for portfolios with different levels of sector
concentration, a different number of sectors as well as under various weights of the sector factors
(i.e. factor weights sometimes referred to in literature as factor loadings) and various assumptions
about factor correlations. Furthermore, we explore the accuracy of our model when we relax the
assumptions that the portfolio is infinitely granular within each sector and that all exposures in the
same sector have the same PD. We find that the model cp underestimates EC in cases of low
granularity, whereas it cp overestimates EC in the presence of heterogeneity in individual PDs, in
particular if creditworthiness increases with exposure size. The resulting errors in EC from both
effects together were less than 10% in the cases under study. Which of the two effects prevails
depends on the specific input parameters. The results seem to suggest, however, that for
representative credit portfolios, the effect of PD heterogeneity is likely to be stronger than the effect

of granularity. Thisimpliesthat the analytic approximations err on the conservative side.



To our knowledge there is only one recent empirical paper that considers the impact of sector
concentration risk on economic capital. Burton et al (2005) simulate the distribution of portfolio
credit losses for a number of real US syndicated loan portfolios. They find that, although name
concentration can meaningfully increase EC for smaller portfolios (which are defined as portfolios
with exposures of less than US$10 billion), sector concentration risk is the main contributor to EC

for portfolios of all sizes.

Two other models that measure concentration risk in a tractable model are presented by Garcia
Cespedes et a (2005) and Dullmann (2006). Garcia Cespedes et a (2005) developed an adjustment
to the single risk factor model in the form of a scaling factor to the economic capital required by the
ASRF model. This “diversification factor” is an approximately linear function of a Hirschmann-
Herfindahl index, calculated from the aggregated sector exposures. This model, however, does not
alow for different asset correlations across sectors. Contrary to the approach in our paper, it cannot
distinguish between a portfolio which is highly concentrated towards a sector with a high
correlation with other sectors, and another portfolio which is equaly highly concentrated, but
towards a sector which is only weakly correlated with other sectors. Dllmann (2006) extends
Moody's Binomial Expanson Technique by introducing default infection into the hypothetical
portfolio on which the real portfolio is mapped in order to retain a smple solution for VaR. Unlike
the Pykhtin model, the models developed by Garcia Cespedes et d and Dullmann require the

calibration of parameters using Monte Carlo simulations.

The paper is organized as follows. In Section 2 we present the default-mode version of the well-
established multi-factor CreditMetrics model which serves as a benchmark. Furthermore, we

discuss the simplified version of the Pykhtin model.

The empirical part of our paper comprises Sections 3 and 4. The credit portfolios on which the
empirical analyses are based are described in Section 3. In Section 4 we explore the impact of sector
concentration on EC by gradually increasing sector concentration, starting from a benchmark

portfolio.

In the theoretical part, which comprises Sections 5 to 7, we evaluate the performance of Pykhtin's
(2004) analytic approximation for economic capital by comparison with EC estimates from Monte
Carlo simulations. Section 5 focuses on highly granular portfolios which are homogeneous on a
sector level and, in particular, on the sensitivity of the results to the number of risk factors and
correlation figures. Section 6 deals with portfolios characterized by lower granularity and Section 7

introduces PD heterogeneity on an exposure level. Section 8 summarizes and concludes.



2. Measuring concentration risk in a multi-factor model

2.1. General framework

We assume that every loan in a portfolio can be assigned to a different borrower, so that the number
of exposures or loans equals the number of borrowers. Each borrower i can uniquely be assigned to
a single specific sector. In practice, (large) firms often comprise business lines from different
industry sectors. However, we make this assumption here for practical and presentational purposes.
Let M denote the number of borrowers or loans in the portfolio, Mg the number of borrowers in
sector S, S the number of sectors and Wy the weight of the exposure of borrower i in sector s

relative to the total portfolio exposure.

The generd framework is a multi-factor default-mode Merton-type model.> The dependence
structure between borrower defaults is driven by sector-dependent systematic risk factors which are
usually correlated. Each risk factor can be uniquely assigned to a different sector, so that the
number of sectors and the number of factors are the same. Credit risk occurs only as a default event
at the end of a one-year horizon, which is congstent with traditional book-value accounting. The

unobservable, normalized asset return Xy of thei-th borrower in sector striggers the default event if

it crosses the default barrier 34 . The corresponding unconditional default probability pg is defined

as

Ps = P(XS- 373')-
The latent variable Xg follows a factor model and can be written as a linear function of an industry

sector risk factor Y, and an idiosyncratic risk factor & :

(1a) Xg =rY, +41-rle,

where se{1,...,S} and i €{1,..., M} . The higher the value of the sector-dependent factor weight

I, the more sensitive the asset returns of firm i in sector S are to the sector factor. The disturbance

term ¢4 follows a standard normal distribution. The assumed weight on the idiosyncratic risk

guarantees that Xq has a standard normal distribution

3 Seealso Gupton et a (1997), Gordy (2000), and Bluhm et al (2003) for more detailed information on this type of
models. The origin of these models can be found in the seminal work by Merton (1974).



The correlations between the systematic sector risk factors Ys and Y, are denoted by p, and are

often referred to as factor correlations. The sector factors can be expressed as a linear combination

of independent, standard normally distributed factors Z;,...,Zs.
S S
)  Y,=) a,Z with Y alf=1for se{l..,S}.
t=1 t=1

The matrix (ocSt ) is obtained from a Cholesky decomposition of the factor correlation matrix.

1<s,t<S
The asset correlation wy for each pair of borrowers in sectors s and t, respectively, can be shown to

be given by

s
(2 g = I pg=1T rtZasnatn'

n=1

Dependencies between borrowers arise only from their affiliation with the industry sector and from
the correlations between the systematic sector factors. The intra-sector asset correlation for each

pair of borrowersis simply the factor weight rs2 squared.

If afirm defaults, the amount of loss depends on the stochastic loss severity v, whose realization

is assumed to be known at the time of default. The credit losses of the whole portfolio are given by

S Mg
3 L= ZZWsiWSil{xs.sN’l(pg)} ’

s=1 i=1

where 1, gives the indicator function.

We assume the same expected loss severity 1 = E [1//5i ]for al borrowers and that all idiosyncratic

risk in loss severitiesis diversified away in the portfolio.*

In summary, the model needs the following input parameters:
e relative exposure size Wy and default probability ps of the i-th borrower in sector s
e thefactor correlation matrix and

e the sector-dependent factor weight g

4 The models analyzed in this paper can also be extended to incorporate idiosyncratic risk in loss severities, if required.



2.2. TheCreditMetrics default-mode model

To obtain the loss distribution, CreditMetrics applies Monte Carlo simulations by generating asset
returns and counting the default events. In each simulation run the portfolio loss is determined from
equation (3). For each exposure, the asset returns for the corresponding borrower are generated
according to equations (1a/b) and compared with the default threshold, which can be determined
given the borrower's default probability. If the realized value of the asset return falls below the

threshold 7, the borrower is in default. The portfolio loss of a simulation run is calculated by

adding up the incurred losses from the defaulted borrowers. The number of simulation runs in our
analyses is typically 200,000. Portfolio losses obtained in each simulation run are then sorted to
form the distribution of portfolio losses, from which EC can be calculated as the difference between

the g-quantile of this loss distribution (i.e., the VaR) and the expected loss. Since it is obtained by

simulation, werefer to it in thefollowing as EC,, .

2.3. Analytic EC approximation

In this section, we describe an analytical approximation to the VaR in the framework of a multi-
factor model. We use a simplified version of the model developed by Pykhtin (2004). The model
approximates the VaR in a multi-factor model by the sum of the VaR in a single factor model in
which the correlation of the firm's asset returns with the single factor depends on the firm's sector,
and a “multi-factor” adjustment term. The main advantage of this model is its tractability, since it
does not require Monte Carlo simulations. Furthermore, we have simplified the model in such away
that it only requires exposure size and PD on a sector level instead of an individual borrower level.
The factor correlation matrix and the factor weights are still needed as in the CreditM etrics model.

On the basis of the work by Gouriéroux et a (2000) and Martin and Wilde (2002), we can

approximate the portfolio loss L (see equation 3) by a perturbed loss variable L, = L'+U-n,
where L isarandom variable constructed such that the g-quantile of its distribution given in closed
form is close to the g-quantile of the distribution of L. U is defined as the perturbation L — L~ and
n is its scaling parameter. L depends on the default probability p(Y'), conditional on a single
systematic risk factor Y :

@ L=u iwsﬁs(v*) with p,(Y") = N[MJ

s=1 1- C2

S

where Cs is the correlation between the systematic risk factor Y" and the asset returns of the firmsin

sector S. Inoder torelaterelate L to L, Y’ finally needsto be related to the risk factors Z, ...,Zsin



the original model. If Y* in (4) is replaced by the realization corresponding to the g-quantile
t, (Y*),then L' equastheVaR tq(L*) for a confidence level g in the asymptotic single risk factor

(ASRF) model with infinitely granular sectors. Note that this single risk factor model differs from
the well-known ASRF model in that the asset correlation ¢ is determined by the sector to which the
borrower belongs. To avoid confusion, we call this model the “ASRF* model”, reserving the term
“ASRF model” for the model with uniform asset correlations.

The g-quantile of the loss distribution, t, ( L) can then be approximated by t, ( Ln ) , or asthe sum of

the VaR in the ASRF model tq(L*) and a multi-factor adjustment At,. This multi-factor

adjustment can be determined from a Taylor series expansion of t, (Ln) . Thefirgt-order effect
dt * *
dty(L,) :E[U|L =tq(L)]
dn |
vanishes because we require that L for all portfolio compositions equals the expected loss
conditional on Y’ , thatis L = E[L |Y*]. By keeping terms up to quadratic and neglecting higher-

. . . _5
order terms, we can approximate the portfolio loss quantile t, (L) asfollows:

. 1di (L)
“ n=0_
"
At

q

The first summand in (5) denotes the VaR tq(L*)in the single risk factor model. The second

summand denotes the multi-factor adjustment, At,, which can be calculated according to Pykhtin

(2004) by

R S NP B M ¢))]
6 At = 2|,(y){V(y) V(y)(l,(y)wﬂ

where |'(y) and 1”(y) denote, respectively, the first and second derivative of the portfolio loss

y=N"(1-q)

function given by equation (4) and setting Y* =y. v(y) gives the conditional variance of L,

conditional on Y™ =y Itsfirst derivativeis V/(Y) . The details and the inputs of these equations are

presented in Appendix B.

5 SeePykhtin (2004) for proofs.



Thelink between L and L is achieved by restricting Y~ to the space of linear mappings of the risk

factors Zy,....Zs
. S
Y =>bZ,.
s=1

The correlations between the industry risk factors Y, and the systematic risk factor Y" are denoted
by p;. These are used to calculate the (also sector-dependent) correlations in the ASRF* model

using the following mapping function, for se{1,...,S}:

S
(7) Cs = rsp; Where p; = zasth :

t=1

Defining ¢s for se{1,..., S} by (7) ensuresthat the required equality L = E[L |Y*] holds for any
portfolio composition.

There is no unigue solution to determine the coefficients bl, bS . In the following, we will use the

approach in Pykhtin (2004), which is briefly summarized in Appendix C.

3. Portfolio composition

3.1. Dataset and definition of sectors

Our analyses are based on loan portfolios which reflect characteristics of real bank portfolios
obtained from European credit register data. Our benchmark portfolio represents the overall sector
concentration of the German banking system which was constructed by aggregating the exposure
values of loan portfolios of 2224 German banks in September 2004. The sample includes branches
of foreign banks located in Germany. Credit exposures to foreign borrowers, however, are excluded.
We deem this to be a reasonable approximation of a portfolio characterized by a degree of
diversification which banks can on average achieve given that it represents the aggregate relative
sector exposures of the national banking system. In principle, we could aso have created a more
diversified portfolio in the sense of having a lower VaR. However, such a portfolio would be

specific to the credit risk model used and would not be obtainable for all banks.

All credit institutions in Germany are required by the German Banking Act (Kreditwesengesetz) to
report quarterly exposure amounts of those borrowers whose indebtedness to them amounts to €1.5
million or more at any time during the three calendar months preceding the reporting date. In

addition, banks report national codes that are compatible with the NACE classification scheme and



indicate the economic activity of the borrower and his country of residence. Banks are required to
aggregate individual borrowers for regulatory reporting purposes to borrower units which are
linked, for example, by equity holdings and congtitute an entity sharing roughly the same risk. The
aggregation of exposures on a business sector level was carried out on the basis of borrower units. If
borrowers in the same unit belong to different sectors, the dominating exposure amount determines
the final sector allocation. Therefore, the credit register includes not only exposures above €1.5
million, but also smaller exposures to individual borrowers belonging to a borrower unit that
exceeds this exposure limit. This characteristic substantially increases its coverage of the credit

market.

The industry classification chosen by CreditMetrics is the Global Industry Classification Standard
(GICS), which wasjointly launched by Standard & Poor's and Morgan Stanley Capital International
(MSCI) in 1999. The classification scheme was developed to establish a globa standard for
categorizing firms into sectors and industries according to their principal business activities. It
comprises 10 broad sectors which are divided into 24 industry groups.® GICS further divides these
groups into industries and sub-industries. However, the latter detailed schemes are not used by
vendor models. In the following, we use the broad sector classification scheme. Because some of
the industry groups that form the broad “Industrial” sector are very heterogeneous, we decided to
split this sector into three industry groups. Capital Goods (including Construction), Commercial
Services and Supplies, and Transportation.’

Credit register datasets, however, use the NACE industry classification system, which is quite
different from the GICS system. In order to use the information from the credit register, we
mapped® the NACE codes onto the GICS codes. Similar mappings are used by other vendor models,
such as S& P's Portfolio Risk Tracker. We have excluded exposures to the financid sector (sector
G) which comprises exposures to Banks (G1), Diversified Financials (G2), Insurance Companies
(G3) and Real Estate (G4) because of the specificities of this sector. Exposures to the rea estate
sector are heavily biased asit comprises alarge number of exposures to borrowers that are related to
the public sector. Since we could not differentiate between private and public enterprises in the red
estate sector, we have excluded this sector from the following analyses. We have also disregarded
exposures to households since there is no representative stock index for them. This is a typical
limitation of models relying on stock price returns for the estimation of asset correlations. In sum,
we distinguish between 11 sectors, which can be considered as broadly representing the Basel 11
asset classes Corporate and SMEs.

6  SeeTable12in Appendix A, which shows the broad sectors and the more detailed industry groups.

Unreported simulations have shown that results are not affected by using the more detailed classification scheme.
8  SeeTable13 in Appendix A for the mapping.

7



3.2. Comparison with French, Belgian and Spanish banking systems

A rough comparison of the relative share of the sector decomposition between the aggregated
German, French, Belgian and Spanish banking systems shows that the numbers are similar.’ The
only noticeable difference is the greater share of the Capital Goods sector (33%) and the smaller
share of the Commercial Services and Supplies sector in Spain compared to Germany and Belgium.
In general, however, the average sector concentrations are very similar across the four countries,

which suggests that our results are to alarge extent transferable.

Figure 1: Comparison of average sector concentration for Germany, Spain, Belgium, and France (*)
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(*) A breakdown of Industrial sector C into the three categories Capital Goods, Commercial Services and Supplies, and
Transportation is not available for France. The sector shares of the aggregated sector C, however, are quite similar for
all four countries.

3.3. Description of the benchmark portfolio

The sectoral distribution of exposures in the benchmark portfolio, which is shown in Table 1,
represents the sectoral distribution of aggregate exposures in the German banking system. The
degree of concentration in this reference portfolio is purely national and driven by the firms' sector
composition because we do not consider the impact of regional or country factorsin our analysis. It
is not uncommon for banks to use a more detailed sector classification scheme. We consider it more
conservative to use arelatively broad sector classification scheme rather than a very detailed one. In
a broad sector classification scheme, a larger proportion of exposures is attached to one sector.

Therefore, correlations between exposures of the same sector (intra-sector correlations), which are

9  Theexact figuresare provided by Table 14 in Appendix A.
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typically greater than the correlations between exposures of a different sector (inter-sector

correlations), will play alarger role.

In order to focus on the impact of sector concentration we assume an otherwise homogeneous
portfolio by requiring that all other characteristics of the portfolio are uniform across sectors. We
assume a total portfolio volume of €6 million that consists of 6,000 exposures of equal size which
implies a highly granular portfolio in which each exposure represents only 0.017% of the tota
portfolio exposure. Every borrower has a probability of default (PD) of 2% and every exposure is
to a different borrower, thus circumventing the need to consider multiple exposure defaults. We set
a uniform expected loss severity or loss given default (LGD) of 45%, which is the corresponding
supervisory value for a senior unsecured loan in the Foundation IRB approach of the Basel Il
framework.”® In the CreditMetrics approach, industry weights can be assigned to each borrower
according to its participation. Here, we assume that every firm is exposed to only one single sector
as its main activity. Furthermore, we assume banks do not reduce exposure to certain sectors by

purchasing credit protection.

Table 1: Composition of the benchmark portfolio (using the GICS sector classification scheme)

Number of
Total exposure exposures % exposure

A: Energy 11,000 11 0.18%
B: Materials 361,000 361 6.01%
C1: Capital Goods 692,000 692 11.53%
C2: Commercia Services and Supplies 2,020,000 2,020 33.69%
C3: Trangportation 429,000 429 7.14%
D: Consumer Discretionary 898,000 898 14.97%
E: Consumer Staples 389,000 389 6.48%
F: Hedlth Care 545,000 545 9.09%
H: Information Technology 192,000 192 3.20%
|: Telecommunication Services 63,000 63 1.04%
J: Utilities 400,000 400 6.67%
Total 6,000,000 6,000

3.4. Sequence of portfolioswith increasing sector concentration

In order to measure the impact on EC of more concentrated portfolios than the benchmark portfolio,
we construct a sequence of six portfolios, each with increased sector concentration relative to the
previous one. To this end, we gradually increase sector concentration in our benchmark portfolio by

using the following algorithm. In each step we remove x exposures from all sectors and add them to

10 See BCBS (2004b).
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a previously selected sector. This procedure is repeated until a single-sector portfolio which is the
portfolio with the highest possible concentration is obtained. The sector which receives x exposures
at every step and also the amount x that is transferred to this sector are determined in such a way
that some of the generated portfolios reflect a degree of sector concentration that is actually

observablein real banks.*

Table 2 shows a sequence of seven portfolios in the order of increasing sector concentration. The
increase in sector concentration is also reflected in the Herfindahl-Hirschmann Index (HHI),* given
in the last row which is calculated at sector level. Portfolio 1 has been constructed from the
benchmark portfolio by re-allocating one third of each sector exposure to the sector Capital Goods.
The even more concentrated portfolios 2, 3, 4 and 5 have been created by repeated application of
this rule. Portfolios 2 and 5 are similar to portfolios of existing banks' insofar as the sector with the
largest exposure size has a similar share of the total portfolio. Furthermore, the HHI is similar to
what is observed in real-world portfolios. Finally, we created portfolio 6 with the highest degree of

concentration as a one-sector portfolio by shifting all exposures to the Capital Goods sector.

Table 2: Sequence of portfolios with increasing sector concentration

Benchmark Portfolio Portfolio Portfolio Portfolio Portfolio Portfolio
portfolio 1 2 3 4 5 6
A: Energy 0% 0% 0% 0% 0% 0% 0%
B: Materials 6% 4% 3% 2% 2% 1% 0%
C1: Capital Goods 12% 41% 56% 71% 78% 82% 100%
C2: Commercia Services & Supplies 34% 22% 17% 11% 8% 7% 0%
C3: Trangportation % 5% 4% 2% 2% 1% 0%
D: Consumer Discretionary 15% 10% 7% 5% 4% 3% 0%
E: Consumer Staples 6% 4% 3% 2% 2% 1% 0%
F: Hedlth Care 9% 6% 5% 3% 2% 2% 0%
H: Information Technology 3% 2% 2% 1% 1% 1% 0%
|: Telecommunication Services 1% 1% 1% 0% 0% 0% 0%
J: Utilities % 4% 3% 2% 2% 1% 0%
HHI 176 24.1 35.2 515 61.7 68.4 1

3.5. Intraand inter-sectoral correlations

Given that asset correlations are usually not observable we have followed market practice in using
sample correlations of stock index returns for their estimation. Table 3 shows the correlation matrix
of the log-returns of those MSCI EMU industry indices which correspond to the 11 sectors. The

sector factor correlations are based on weekly return data covering the period from November 2003

1 This procedure for generating a sequence of portfolios with increasing sector concentration is by no means unique.
Results however are not sensitive to aternative rules of portfolio generation.
12 See Hirschmann (1964).

13 Confidentiality requires those banks with a high sector concentration remain anonymous.
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to November 2004. Sectors that are highly correlated with other sectors (i.e. sectors that have an
average inter-sector correlation of greater than 65%) are Materials (B), Capital Goods (C1),
Transportation (C3) and Consumer Discretionary (D). Sectors that are moderately correlated with
other sectors, i.e. sectors that have an average inter-sector correlation of between 45% and 65%, are
Commercial Services and Supplies (C2), Consumer Staples (E) and Telecommunication (I). Sectors
that are the least correlated with other sectors, i.e. sectors that have an average inter-sector
correlation of less than 45%, are Energy (A) and Health Care (F). The relative order of these sectors
is broadly in line with results reported in other empirical papers* The heterogeneity between
Capital Goods, Commercial Services and Supplies, and Transportation is confirmed by noticeable
differences in correlations. The intra-sector correlations and/or inter-sector correlations between
exposures are obtained by multiplying the sector correlations of Table 3 with the sector-dependent

factor weights, see equation (2).

Table 3: Correlation matrix based on MSCI EMU industry indices (based on weekly log return
data covering the Nov 2003 - Nov 2004 period; in percent)

A B C1 c2 C3 D E F H I J
A: Energy 100 50 42 34 45 46 57 34 10 31 69
B: Materials 100 87 61 75 84 62 30 56 73 66
C1:Capital Goods 100 67 83 92 65 32 69 82 66
C2:Commercia Svs& Supplies 100 58 68 40 8 50 60 37
C3:Transportation 100 83 68 27 58 77 67
D: Consumer discretionary 100 76 21 69 81 66
E: Consumer staples 100 33 46 56 66
F: Hedlth Care 100 15 24 46
H: Information Technology 100 75 42
|: Telecommunication Services 100 62
J: Utilities 100

More difficult than the estimation of sector correlations is the determination of the factor weights,
which determine the intra-sector asset correlations. We do not use the formula provided in
CreditMetrics to compute the factor weights as recent research has suggested that this formula does
not fit the German data very well.™ Instead, we assume a unique factor weight for all exposures and

calibrate the value of the factor weight to match the corresponding IRB regulatory capital charge.

More precisely, we determine a factor weight r, =0.50 for al sectors se{1,...,S} such that the

14 Seg, for example, De Servigny and Renault (2001), FitchRatings (2004) and Moody's (2004). It is difficult to compare
the absolute inter-sector correlation values as different papers report different types of correlations. De Servigny and
Renault (2001) report inter-sector default correlation vaues, FitchRatings (2004) reports inter-sector equity
correlations while Moody's (2004) provides correlation estimates inferred from co-movements in ratings and asset
correlation estimates. Furthermore, the different papers distinguish between a different number of sectors.

5 See Hahnenstein (2004) for a detailed analysis.
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economic capital ECgy, of the benchmark portfolio equals the IRB capital charge for corporate

exposures, assuming a default probability of 2%, an LGD of 45% and a maturity of one year.

Setting the sector factor weight to 0.5 is dightly more conservative than empirical results for
German companies suggest. The average of al the correlation entries in the factor correlation
matrix is 0.59, which implies by evoking equation (2) an average asset correlation of 0.14 between
exposures. Empirical evidence™ has shown that German SMEs typically have an average asset
correlation of 0.09, which suggests r, = 0.39. Large firms, however, are typically more exposed to

systematic risk than SMEs and therefore usually have higher asset correlation values.*

Equation (2) implies that intra-sector asset correlations are thus fixed at 25%. Inter-sector asset
correlations can be calculated by multiplying the factor weights of both sectors by the inter-sector
factor correlation. The lowest correlation between the Energy sector index and the Information
Technology sector index of 10% trandates into an inter-sector asset correlation of 2.5%. The
highest correlation occurs between the Commercial Services and Supplies and the Consumer

Discretionary sector index. At 92%, it tranglates into an inter-sector asset correlation of 23%.

4. Impact of sector concentration on economic capital

In this section we analyze the impact of increasing sector concentration on economic capital, which
is defined as the difference between the 99.9% percentile of the loss distribution and the expected
loss. The results are given in Table 4. We observe for the corporate portfolios that economic capita
increases from the benchmark portfolio to portfolio 2 by 20%. Economic capital for the
concentrated portfolio 5 increases by a substantia 37% relative to the benchmark portfolio. These
results demonstrate the importance of taking sector concentration into account when calculating
EC.

Typicaly, the corporate portfolio comprises only a fraction of the total loan portfolio (which aso
contains loans to sovereigns, other banks and private retail clients). Although the increase in sector
concentration may have a significant impact on the EC of the corporate credit portfolio, it may have
a much smaller impact in terms of a bank’s total credit portfolio. For a meaningful comparison, we
assume that the corporate credit portfolio comprises 30% of the tota credit portfolio and that the
banks need to hold capital amounting to 8% of their total portfolio. By assuming that there are no
diversification benefits between corporate exposures and the bank's other assets, the EC of the total
portfolio can be determined as the sum of the EC for the corporate exposures and the EC for the

remaining exposures.

16 See Hahnenstein (2004).
17" See, for example, Lopez (2004) for empirical evidence of thisrelation for the US.
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Table 4: Impact of sector concentration on economic capital (ECy,) for the sequence of corporate
portfolios and for the sequence of total portfoliosi) of a bank (in percent)

Benchm_ar K Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 Portfolio 6
portfolio
Corporate portfolio 7.8 8.8 9.5 10.1 10.3 10.7 11.7
Total portfolio 8.0 8.2 85 8.7 8.8 8.9 9.2

(*) Totd portfolio includes 30% corporate credit and 70% other credit (to retail, sovereign,...)

The results for the total portfolios of the bank are also shown in Table 4. As expected, the impact of
an increase in sector concentration is much less severe when looking at the EC for the total
portfolio. Economic capital for portfolio 5, for example, increases by about 16% relative to the

benchmark portfolio instead of 37% if only the corporate portfolio is taken into account.

In order to verify how robust our results are to the input parameters, we carried out the following
four robustness checks (RC1 - RC3):

o alower uniform PD of 0.5% instead of 2% for al sectors (RC1),

o a different factor correlation matrix (See Table 15, Appendix A) representing the
correlation matrix with the highest average annual correlation over the period between 1997
and 2005 (RC2) and

e auniform intra-sector asset correlation of 15% and a uniform inter-sector asset correlation
of 6% (RC3), which are values used by Moody’s for the risk analysis of synthetic CDOs.*®

The results of the three robustness checks are summarized in Table 5. Although the absolute level of
EC varies between these robustness checks, the relative increase in EC compared with the
benchmark portfolio is similar to previous results in this section. For Moody’'s correlation
assumptionsin RC3, theincrease in EC is stronger than for the other robustness checks. This can be
explained by the larger difference between intra-sector and inter-sector correlations, which is
justified by the higher number of sectors they use, and which leads to a stronger EC increase when
the portfolio becomes more and more concentrated in a single sector. We conclude that the
observed substantial relative increase in EC due to the introduction of sector concentration is robust
against redistic variation of the input parameters. Furthermore, this increase in EC may be even

greater, depending on the underlying dependence structure.

18 sSeeFuet a (2004).
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Table 5: EC for the benchmark portfolio and its relative increase for the more concentrated
portfolios 1 - 6 (in percent of total exposure)

Portfolio Using" Initial rule’  RC1: PD=0.5% Re2 d“;ggg RC3: Moody's
EC
Bsgft?gl‘%k 78 33 87 40
Proportional change of EC in %
Portfolio 1 +13 +12 +6 +6
Portfolio 2 +20 +21 +13 +18
Portfolio 3 +30 +29 +22 +39
Portfolio 4 +35 +37 +24 +46
Portfolio 5 +36 +42 +24 +51
Portfolio 6 +49 +52 +33 +77

5. Evaluation of the EC approximationsfor sector-dependent PDs
and high granularity
The purpose of this section is to use the model by Pykhtin to calculate EC and to compare these EC
approximations with the EC obtained from simulations. In this section we assume first
homogeneity within each sector and second a highly granular exposure distribution in each sector.
Because of these two assumptions of our simplified model, the results can be understood as an
upper bound in terms of approximation quality. We further test the accuracy of the EC
approximations by varying the sector distributions, the factor correlations, the factor weights, the

number of factors and the sector PD. Portfolios of coarser granularity and heterogeneous PDs on an

exposure level are studied in Sections 6 and 7.

We again assume a confidence level g of 99.9% and employ the following three risk measures

Ms
(where EL = u ZS:ZWS. P, ):

s=1 i=1
e economic capital in the ASRF* model, which isdefined as EC™ =ty ( L ) —-EL

e economic capital based on the multi-factor adjustment,

ECyra = tooon ( N ) + Algg gy, — EL

e economic capital based on Monte Carlo (MC) simulations, EC,

Firstly, we present results for the benchmark portfolio and for the more concentrated portfolios 1 - 6

in Table 6. The model parameters are the same asin Section 4.
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Table 6: Comparison of EC", EC,,, and EC,, for different exposure distributions across

sectors with increasing sector concentration given a default probability of 2% (in percent
of total exposure)

Relative error (*)

Portfolio EC* ECyea EC,., o ECyra
Benchmark 7.8 79 8 1.3%

portfolio
Portfolio 1 8.7 8.8 8.8 0.0%
Portfolio 2 94 94 9.5 -1.1%
Portfolio 3 10.1 10.1 10.1 0.0%
Portfolio 4 105 105 10.3 1.9%
Portfolio 5 10.7 10.7 10.7 0.0%
Portfolio 6 11.6 11.6 11.7 -0.9%

(*) Therelative error is defined as the relative difference between ec,  and Ec,,, .

The EC figures for the benchmark portfolio in Table 6 show that EC" and EC,,., provide
extremely accurate proxies for ECy . This result suggests that in the given examples the

calculation of EC* may, in practice, be sufficiently accurate for certain risk-management purposes.
The four EC estimates for the more highly concentrated portfolios 1 - 6 indicate that economic
capital increases as expected, but that our results for the approximation performance of EC”* and
EC,-, still hold. According to Table 6, relative errors of EC,,-, are in arelatively small range
between 0.0% and 1.9%.

Secondly, we check whether our results differ when we vary the underlying correlation structure.
To this end we calculate in Table 7 the three risk measures for different factor correlation matrices.
More specifically, we assume homogeneous factor correlation matrices in which the entries (outside

the main diagonal) vary between 0 and 1 in increments of 0.2. The last case, in which all factor

correlations are equal to one, corresponds to the case of a single-factor model.
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Table 7: Comparison of EC™, EC,,., and EC,,, for different factor correlations p, given a default
probability of 2% (in percent of total exposure)

Factor correlation Relativeerror of
Y EC” ECuea ECsnm ECyra
0.0 33 39 4.0 -2.5%
0.2 45 49 50 -2.0%
04 6.1 6.3 6.3 0.0%
0.6 79 7.8 8.0 -2.5%
0.8 9.7 9.7 9.9 -2.0%
1.0 11.6 11.6 11.7 -0.8%

Table 7 shows ECg, and its proxies EC* and EC,,., for increasing factor correlations. As

expected, economic capital increases with increasing factor correlations, since a higher factor

correlation reduces the diversification potential by shifting probability mass to the tail of the loss
distribution. The highest relative error of EC,,-, of al factor correlations considered is 2.5% which

still reveals a good approximation performance. With increasing factor correlations the multi-factor

model approaches the structure of a one-factor model for which EC™ and EC,,., coincide. In all
cases EC’ is relatively close to EC,,.,. Therefore, our earlier results concerning the good

approximation performance of EC" and EC,,., aso hold under different factor correlation

assumptions.

Thirdly, we vary the value of the factor weight r from 0.2 to 0.8. There is a strong increase in EC

with the factor weight but this does not affect the approximation quality, neither of EC* nor of
ECyea-

Fourthly, we explore how the results depend on the number of factors. For this purpose we vary the
number of factors from 2 to 16. Figure 2 shows how EC", EC,,., and EC,, depend on the
number of sectors and the factor correlation. EC,,-, isonly plotted for 2 sectors because its values

areindistinguishable from EC for 6 and for 16 sectors.
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Figure 2: Economic capital (EC™, EC,,, and EC;,,) for different factor correlation values for 2,
6 and 16 sectors (in percent of total exposure)
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Factor correlation

For a given number of sectors, EC increases in Figure 2 with factor correlation as expected. If the
factor correlation approaches one, then EC values coincide, irrespective of the number of sectors.

The reason is that in the limiting case of a factor correlaion equa to one, the model collapsesto a

single-factor model.
For a factor correlation of 0.6, which is also the average of the entries in the correlation matrix in
Table 3, and also for higher factor correlations, the relative approximation error is below 1% for

EC,. and below 2% for EC™. Therefore, the previous results showing a good approximation

performance of EC" and an even better one for EC,,-, are found to be robust with respect to the

number of sectors, at least for realistic factor correlations.

Figure 2 also showsthat EC™ and ECy,, generaly decrease when the number of sectors increases

for given asset correlation values. This result can be explained by risk reduction through

diversification across sectors.

Fifthly, we tested whether our results for the approximation performance of EC* and EC,,., are

sensitive to PD heterogeneity on a sector level. For this purpose we employ the scaled default rates

for sectors from Table 8.
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Table 8: Average historical default rates (1990-2004; before and after scaling to an exposure-
weighted expected average default rate of 2% for the benchmark portfolio; in percent)

Sector Unscaled default rate Scaled default rate
A: Energy 15 1.0
B: Materials 28 19
C1: Capital Goods 29 20
C2: Commercia Services and Supplies 37 25
C3: Trangportation 29 2.0
D: Consumer Discretionary 3.2 2.2
E: Consumer Staples 35 24
F: Hedlth Care 16 11
H: Information Technology 24 16
|: Telecommunication Services 36 24
J: Utilities 0.6 04

Source: own calculation, based on S&P (2004)

The historical default ratesin Table 8 are, on average, higher than the value of 2% which is used for
the PDs in the case of homogeneous PDs for all sectors. In order to isolate the effect of PD

heterogeneity between sectors, we scale the historical default rate, p:iSt, for every sector s as

follows,

0.02

® =t
2w, p
s=1
In this way we ensure that the weighted average PD of the benchmark portfolio stays at 2% evenin
the case of PD heterogeneity across sectors.

The results for ECy,, and the two analytical approximations of EC, using the scaled, historical

default rates as PD estimates, are given in Table 9.
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Table 9: Comparison of EC™, EC,,., and EC;,, (in percent of total exposure), based on sector-
dependent default probabilities, estimated from historical default rates

' EC* Relativeerror of

Portfolio ECMF A ECS-m ECMFA
Benchmark 8.0 80 8.0 0.0%

portfolio

Portfolio 1 8.8 8.9 8.8 1.1%
Portfolio 2 94 94 9.5 -1.1%
Portfolio 3 10.1 10.1 10.1 0.0%
Portfolio 4 105 10.5 10.4 1.0%
Portfolio 5 10.7 10.7 10.7 0.0%
Portfolio 6 11.6 11.6 11.7 -0.9%

For all risk measures the results in Table 9 are relatively close to those in Table 6. The more
concentrated the exposures are in one sector, the smaller the difference to Table 6 becomes. Thisis
explained by the fact that the sector PDs are calibrated to an average value of 2% which is also the

PD used for Table 6. The approximation quality of EC™ and EC,,., is similar to Table 6. We

conclude that, in qualitative terms, the results obtained for a uniform PD also hold for

heterogeneous sector-dependent PDs.

6. Evaluation of the EC approximationsfor sector-dependent PDs

and low granularity

Simulation results in the previous section, which reveal a reasonably good approximation quality
for EC* and EC,,.,, were obtained conditional on a uniform PD in every sector and highly

granular portfolios. However, portfolios of small banks, in particular, are less granular. In the
following we explore the impact of lower granularity. From the set of seven portfolios, only the
benchmark portfolio and portfolio 6 are considered as they have the lowest and the highest sector

concentration. The impact of granularity is considered for the following two cases.

In the first case, characterized by a portfolio of representative granularity, the distribution of
exposure size was selected from a sample of typical small, regiona German banks to reflect an
average granularity in terms of the HHI. The purpose is to measure the impact of granularity for an
exposure distribution that is representative for real banks. However, since the exposure distribution

is based on central credit register data, only larger exposures are captured™ in the underlying data

19 See section 3.1 for more information on the characteristics of exposures included in the German central credit regjster.
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set with the consequence that this exposure distribution is less granular than what we can expect for
real bank portfolios. The HHI of the portfolio, measured on single-exposure level, is 0.0067
compared with an HHI of 0.001 for the highly granular portfolios used in the previous section.
Descriptive statistics on exposure size of the new portfolio are shown in Table 16 in Appendix D.
Unfortunately the borrower-specific data on exposure size contain no sector information.”® The
allocation of exposures to sectors was achieved by randomly drawing exposures from the data set
under the contraint that the generated distribution of exposures across sectors mirrors the sectora
distribution of the benchmark portfolio. To contral for any sampling bias in the results we repeated
this random assignment thereby creating several portfolios. These portfolios have the same sector
distribution but vary in the distribution of individual exposure size in each sector. With these

portfolios we verified the robustness of the resultsin this and the following section.

In the second case, characterized by low granularity, we consider the highest individua exposure
shares that are admissible under the EU large exposure rules? In this way we obtain an upper limit
for the potential impact of granularity. According to the EU rules, an exposure is considered “large’
if its amount requires 10% or more of regulatory capital. Banks are generally not allowed to have an
exposure that requires at least 25% of regulatory capital. Furthermore, the sum of all large

exposures must not require more than 8 times the regulatory capital .

We assume that a bank’s regulatory capital is 8% of its total loan volume. For atotal portfolio
value of 6,000 currency units, banks are required to hold 480 currency units in capital. Each large
exposure requires a minimum amount of capital of 48 currency units and a maximum amount of
120 currency units. The total sum of all large exposures must not exceed 3,840 currency units. With

these restrictions, the least granular admissible exposure distribution of our portfolio consists of
e 3840/120 = 32 loans of 120 currency units

o 2160/47 = 45 loan exposures of 47 currency units (just below the large exposure limit of
48) and

e aremaining single exposure of 45 currency units

The HHI of this portfolio, measured on a single-exposure level, is 0.015. Since this portfolio is
charaterized by relatively coarse granularity, its HHI is considerably higher than for the portfolio

with representative granularity. While keeping the average sector concentration of the portfolio

2 The reason for this missing information is that we do not use credit register data directly but a matched sample of

credit register data and a second database which provides us aso with individua borrower PDs, not included in the
credit register but required for the analysis of PD heterogeneity in section 7.

2l SeeDirective 93/6/EEC of 15 March 1993 on the capital adequacy of investment firms and credit institutions.

2 The last two restrictions may be breached with permission of the German Federal Financial Supervisory Authority
(BaFin), in which case the excess must be fully backed by capital.
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constant, we increase the granularity of the portfolio to reflect the exposure size distribution of this

least granular portfolio. More details of this portfolio can be found in Table 17, Appendix D.
Economic capital from simulations, EC,,_, and the analytic proxies EC™ and EC,,., are givenin

Table 10.

Table 10: Comparison of EC*, EC,,., and EC,, (in percent of total exposure ) for portfolios
with representative and low granularity using sector-dependent default probabilities

G larit EC EC Relative error of
Portfolio ranularity EC” ;
MFA sm ECMF N
Benchmark representative 8.0 8.0 86 7%
portfolio
low 8.0 8.0 9.3 -14%
Single sector low 116 11.6 12.7 -8%
portfolio

The EC,, value of 9.3% for the low granular benchmark portfolio is 1.3 percentage points (or

14% in relative terms) higher than for the highly granular benchmark portfolio in Table 9. This
difference appears to be substantial, but we have to consider that the granularity of the portfolio in

Table 10 is very low since it reflects the lowest granularity permissible under European bank
regulation. EC,,, for the single sector portfolio 6 in Table 10 is higher than for the benchmark

portfolio, which is consistent with earlier reported results.

The EC,,, value of 8.6% for the benchmark portfolio with representative granularity is relatively

close to the value of 9.3% for the portfolio with low granularity, at least if compared with EC | of

8.0% for the infinitely granular benchmark portfolio in Table 9. One reason is that some exposures
in the portfolio with representative granularity technically violate the large exposure rules®
Therefore, as mentioned before, the portfolio of “representative” granularity should still be regarded

as conservative in terms of granularity.

For the purpose of this analysis, the approximation errors of the EC proxies, EC™ and EC\rn. ae

more important than the level of EC. Both EC proxies are based on the assumption of infinite

granularity in each sector, while the EC  calculations take granularity into account. We find that

2 This can be explained either by special BaFin approval or, most likely, by data limitations given that our credit
register data do not contain loans below €1.5 million. The latter implies that their sum is lower than the total portfolio
exposure of the data-providing real bank and, therefore, our relative exposure weights are biased upwards. In other
words, it is well possible that the large exposure limit is breached for our portfolio, although the limit is still met by
the data-providing bank.
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EC" and EC,=a Can substantially underestimate EC by up to 14%, in particular for portfolios with

coarse granularity .

7. Evaluation of EC approximationsfor heter ogeneous sector s

So far we have only considered sector-dependent PDs, which means PD variation on a sector level,
but not on the exposure level. In the following we explore the impact of heterogeneous PDs inside a
sector together with the impact of granularity. For the benchmark portfolio of representative
granularity analyzed in the previous section, we have also individual borrower PDs which were
computed from a logit model based on firms' accounting data. In order to apply the logit model,
borrower information from the central credit register on exposure size had to be matched with a
balance sheet database, also maintained by the Deutsche Bundesbank.”* Using empirical data on
exposure size and PD automatically captures a potential dependence between these two

characteristics.

In order to ensure comparability with previous results, we apply the same scaling procedure as in
Section 6 to ensure that the exposure-weighted average PD in each sector is the same as the
corresponding scaled default rate given in Table 8. Information on this PD distribution is given in
Table 18, Appendix D.

The portfolio with the lowest granularity admissible under the EU large exposure rules is an
artificially generated portfolio, so that we have no PD information for single exposures. Therefore,
we randomly assign PDs from an empirical aggregate PD distribution based on the same balance
sheet database, but this time aggregated over a sample of banks. The empirical PD distribution is
givenin

Table 20 and information on the PD distribution of the low granular portfolio is provided in Table
19, Appendix D.?

The results for PD heterogeneity in every sector are given in Table 11. The reduction of EC,

compared to Table 10, which occurs for both portfolios, is due to the PD heterogeneity on the
exposure level. Thisimpact of PD heterogeneity has also been noted by Hanson et al (2005) and can
be explained by the concavity of the dependence of EC on PD.

2 More details on the database and the logit model that was used to determine the PDs can be found in Kriiger et al.
(2005).

Since a negative correlation between exposure size and PD emerged as a stylized fact in recent empirica literature
(See, for example, Dietsch and Petey (2002) or Lopez (2004)), we also considered the case that the PDs are perfectly
ordered in terms of decreasing exposure size. We found that our results are robust in this case.
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Table 11: Comparison of EC*, EC,,., and EC,,, for portfolios with heterogeneous sectors (in
percent of total exposure)

G larit EC EC Relativeerror of
Portfolio ranularity EC* -
MFA sm ECMF N

Benchmark representative 8.0 8.0 7.7 +4%

portfolio

low 8.0 8.0 8.5 -6%

Single sector low 116 116 10.8 +8%

portfolio

Since EC" and EC,,., do not account for PD heterogeneity on the exposure level, these values
stay unchanged from Table 10 while EC,,, decreases. As a consequence the underestimation by

using EC™ and EC,,., instead of EC, is reduced relative to Table 10, or even reversed to an
overestimation of EC. Thisis confirmed by the approximation error in the last column of Table 11,

which is lower when using heterogeneous PDs compared to the case of sector-dependent PDs in
Table 10.

For the single-sector portfolio and the benchmark portfolio with representative granularity, the
approximation errors of the EC proxies are positive, implying that the effect of PD heterogeneity is
stronger than the granularity effect, measured rdative to the highly granular portfolio with
homogeneous sector PDs. As a consequence, the EC proxies provide conservative estimates.
Comparing the conservativeness of the single-factor portfolio and the benchmark portfolio in Table
11, we observe that the degree of overestimation halves from +8% to +4%. This suggests further

robustness checks in particular for portfolios with a higher number of sectors.

In summary, the approximation errors for all portfolios considered vary between -6% and +8%. The
results of Table 10 and Table 11 taken together demonstrate that the effect of PD heterogeneity
counterbalances the effect of granularity. In general it is not possible to determine which of the two
opposing effects dominates. For the portfolio with a representative granularity in Table 11, the
effect of granularity is arguably weaker which suggests that for portfolios of “average granularity”

in real banks, PD heterogeneity would tend to overcompensate the granularity effect and EC* and

EC,ra Would provide conservative estimates.

Further empirical work iswarranted to confirm this indicative result.

Our analysis has shown that PD heterogeneity on the exposure level improves the performance of
the analytic EC approximations relative to the situation of a granular portfolio with (only) sector-
dependent PDs. The reason is that PD heterogeneity reduces the underestimation of EC that is
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caused by the granularity of the portfolio. This effect is even stronger if larger exposures or firms

have lower PDs than smaller ones. Furthermore, PD heterogeneity appears not to affect the relative

difference between EC,,., and EC.

8. Summary and conclusions

The minimum capital requirements for credit risk in the IRB approach of Basel Il implicitly assume
that credit portfolios of banks are well diversified across business sectors. Potential concentration
risk in certain business sectorsis covered by Pillar 2 of the Basel |1 Framework which comprises the
supervisory review process.’® To what extent the regulatory minimum capital requirements can
understate economic capital is an empirical question. In this paper we provide a tentative answer by
using data from the German central credit register. Credit risk is measured by economic capital in a

multi-factor asset value model and determined by Monte Carlo simulations.

In order to measure the impact of concentration risk on economic capital, we start in the empirical
part with a benchmark portfolio that reflects the aggregate exposure distribution across sectors of
the German banking system. Since the exposure distributions across business sectors are similar in
Belgium, France and Spain, we expect that our main results also hold for other European countries.
Starting with the benchmark portfolio, we have successively increased sector concentration,
considering degrees of sector concentration which are observable in real banks. The most
concentrated portfolio contained exposures only to a single sector. Compared with the benchmark
portfolio, economic capital for the concentrated portfolios can increase by almost 37% and by 50%
in the case of a one-sector portfolio. We have subjected our results to various robustness checks.
We find that the increase in economic capital may even be greater, contingent on the dependence
structure. This result clearly underlines the necessity to take inter-sector dependency into account

for the measurement of credit risk.

Since concentration in business sectors can substantially increase economic capital, a tractable and
robust calculation method for economic capital which avoids the use of computationally
burdensome Monte Carlo simulations is desirable. For this purpose the theoretical part evaluates the
accuracy of a model developed by Pykhtin (2004) which provides an anaytical approximation of
economic capital in a multi-factor framework. We have applied a simplified, more tractable version
of the model which requires only sector-aggregates of exposure size, PD and expected |oss severity.

The dependence structure is captured by the correlation matrix of the original multi-factor model.

Furthermore, we have evaluated the extent to which EC", as the first of two components in the

analytic approximation of economic capital, already provides a reasonable proxy of economic

% See BCBS (2004b), paragraphs 770-777.

26



capital. EC" refersto the economic capital for a single-factor mode! in which the sector-dependent
asset correlations are defined by mapping the richer correlation structure of the multi-factor model.
The benchmark for the approximation quality is aways the economic capital figure of the original

multi-factor model which is obtained from MC simulations.

We have shown that the analytic approximation formulae perform very well for portfolios with
highly granular and homogeneous sectors. This result holds for portfolios with different sector

concentrations and for various factor weights and correlation assumptions. Furthermore, we have

found that EC” isrelatively close to the simulation-based economic capital for most of the realistic

input parameter tupels considered.

Finally, we explore the robustness of our results against the violation of two critical model
assumptions, namely infinite granularity in every sector and sector-dependent PDs. We find that
coarser granularity and PD heterogeneity (on the single exposure level) have counterbalancing
effects on the performance of the analytic approximations for economic capital. Coarser granularity
induces the analytic approximation formulae to have a downward bias which increases to 14% in
extreme cases of portfolios with the lowest granularity permissible by EU large exposure rules,

depending on the sector structure of the portfolio.

Replacing sector-dependent PDs by heterogeneous PDs on the individual exposure level reduces
economic capital, but does not affect the analytic approximations. As a consequence, the downward
bias decreases. The relative error of the analytic approximation, measured relative to the simulation-
based economic capital figure, lies in a range between -6% and +8%, dependent on the exposure
distribution across sectors and the number of factors. In summary, we find that heterogeneity in
individual PDs and low granularity partly balance each other in their impact on the performance of
the anaytic approximations. Which effect prevails depends on the specific input parameters.
Indicative results suggest that in representative credit portfolios, PD heterogeneity will at least
compensate for the granularity effect which suggests that the analytic formulae approximate

economic capital reasonably well and err on the conservative side.

In the cases studied, it is possible to use the analytic economic capital approximations of the
simplified Pykhtin model without sacrificing much accuracy. This is an important result as it
suggests, pending further robustness checks, that supervisors and banks can reasonably well
approximate their economic capital for their credit portfolio by a reatively simple formula and

without running computationally burdensome Monte Carlo simulations.

Further research seems to be warranted, particularly in further advancing Pykhtin’s methodology in
a direction which improves its approximation accuracy while staying parsimonious in terms of data
requirements. This could be achieved, for example, by exploring aternative ways to map the

correlation matrix of the multi-factor model into sector-dependent asset correlations.
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Appendix A

Table 12: GICSClassification Scheme: Broad Sector and Industry Groups

A: Energy Al: Energy
B: Materials B1: Materials
C: Industria C1: Capital goods

C2: Commercia Services and Supplies
C3: Trangportation

D: Consumer Discretionary D1: Automobiles and Components
D2: Consumer Durables and Apparel
D3: Hotels, Restaurants and Leisure
D4: Media

D5: Retailing

E: Consumer Staples E1: Food and Drug Retailing
E2: Food, Beverage and Tobacco
E3: Household and Persona Products

F: Hedlth Care F1: Health Care Equipment and Services
F2: Pharmaceuticals and Biotechnology

G: Financials G1: Banks

G2: Diversified Financials
G3: Insurance

G4: Redl estate

H: Information Technology H1: Software and Services
H2: Technology Hardware & Equipment
H3: Semiconductors & Semiconductor Equipment

I: Telecommunication Services 11: Telecommunication Services

J: Utilities J1: Utilities
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Table 13: Mapping NACE codesto GICS codes

2 (or more) -digit code Description Mapped to GICS
1 Agriculture and hunting E
2 Forestry B
5 Fishing E
10 Coal mining B
11 Crude petroleum and natural gas extraction A
12 Mining of uranium and thorium B
13 Mining of metal ores B
14 Other mining and quarrying B
15 Food and beverages manufacturing E
16 Tobacco manufacturing E
17 Textile manufacturing D
18 Textile products manufacturing D
19 L eather and leather products manufacturing D
20 Wood products D
21 Pulp, paper and paper products B
22 Publishing and printing C2
23 Manufacture of coke, refined petroleum products and nuclear fuel A
24 (excl 244) Chemicals and chemical products manufacturing B
244 Pharmaceuticals F
25 Rubber and plastic manufacturing D
26 Other non-metallic mineral products B
27 Basic metals manufacturing B
28 Fabricated metal manufacturing B
29 Machinery and equipment manufacturing Cl
30 Office machinery and computers manufacturing H
31 Electrical machinery manufacturing H
32 TV and communication equipment manufacturing H
33 Medical and optical instruments manufacturing F
34 Car manufacturing D
35 Other transport equipment manufacturing D
36 Furniture manufacturing D
37 Recycling J
40 Gas and dectricity supply J
41 Water supply J
45 Construction Cl
50 Car sales, maintenance and repairs D
51 Wholesale trade c2
52 (excl 5211, 522,523) | Retail trade D
522, 523 Consumer staples E
55 Hotels and restaurants D
60 Land transport C3
61 Water transport C3
62 Air transport C3
63 Transport supporting activities and travel agencies C3
64 Post and telecommunication |
65 Financial ingtitutions Gl
66 Insurance G3
67 Support to financial institutions G1
70 Redl estate G4
71 Machinery and equipment leasing manufacturing Cl
72 Computer and related activities H
85 Health care and social work F
90 Sewage and refuse disposal J
96 Residential property management G4
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Table 14: Comparison of sector concentrations, aggregated exposure values over banksin
Germany, France, Belgium and Spain (in percent)

Sector Germany France Belgium Spain
Al: Energy 0.18 0.88 0.05 1.05
B1: Materids 6.01 397 7.45 9.34
C: Industrial® 52.36 63.82 54.77 48.53
C1: Capital Goods 11.53 9.89 32.90
C2: Commercia Servicesand
Supplies 33.69 37.74 10.20
C3: Trangportation 7.14 7.14 543
D: Consumer Discretionary 14.97 11.91 15.77 18.60
E: Consumer Staples 6.48 721 7.05 10.20
F: Hedlth Care 9.09 5.00 5.64 1.85
H1: Software and Services 3.20 147 1.86 1.99
|1: Telecommunication Services 1.04 191 054 267
J1: Utilities 6.67 3.82 6.87 5.77

Table 15: Corrédation matrix based on MSCI EMU industry indices (based on weekly log return
data covering the Nov 2002 - Nov 2003 period; in percent).

A B C1 c2 C3 D E F H I J
A: Energy 100 62 66 43 62 67 78 70 50 47 72
B: Materials 100 91 78 77 85 73 69 74 68 69
C1:Capital Goods 100 76 80 92 74 68 81 72 75
C2:Commercia Svs& Supplies 100 66 81 58 53 71 58 52
C3:Transportation 100 78 68 59 70 65 64
D: Consumer discretionary 100 71 66 86 72 70
E: Consumer staples 100 75 62 60 70
F: Hedlth Care 100 55 44 70
H: Information Technology 100 69 58
|: Telecommunication Services 100 67
J: Utilities 100

Z Aggregate of C1, C2 and C3 only used for comparison with French data. Not used in the analysis.
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Appendix B

The multi-factor adjustment At, can be calculated according to Pykhtin (2004) as follows:

___ 1 "(y)
(A1) At 2 ){ '(y) - (y)(l() H

where y denotes the single systematic risk factor.

y=N"'(1-q)

The first and second derivatives of the loss distribution function in a one-factor model are

I'(y) = Zst);(y)
(A2)
1"(y) = u ZW p(y)

where p.(y) and pl(y) are, respectively, the first and the second derivatives of the conditional
probability of default.

. ¢ | NT(P)-Cy
- _ s N S S
- Y

f(y) = N (p)-cy (N(ps)csyJ

\/1— c? \/1 c? J1-¢2

The factor weight in the ASRF* model is denoted by ¢s which can be written as ¢, =T p,

(A3)

where p_ denotes the correlation between the composite sector factor Y, and the systematic factor

Y in the ASRF* model.

For the conditional variance v(y) and itsfirst derivative holds

vy =it 3w [N, (N (B(). N ()0l )~ BB ()]

s=1 t=1

+u’ i\’\’f[ﬁs(Y)—Nz(Nl(bs(y)), N (Py(y)) k)]

(Bu(y)) -y by(y)

S S
V(y)=2u® D> ww pi(y)| N

2 - f)t(y)
s=1 t=1 1—(60;)
0 leibg(y){lz N[ ;Zf Nl(ﬁs(y))}]
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where Nz( ) denotes the cumulative distribution function of the bivariate-normal distribution and
a);’t has the meaning of a conditional asset correlation for two exposures in sectors t and S,
conditional on Y. This conditional asset correlation can be written as

Y 0y —CG

v (1—c§)(1—cf) |
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Appendix C

In Pykhtin (2004) the coefficients b, ..., bs are obtained by maximizing the correlation between Y

and therisk factors Yi,...,Ys whichleads to the following optimization problem:

S S
mex 0. ah.

S os=1  t=1

S
subject to z bs2 =1. The solution of this problemisgiven by

s=1

A is the Lagrange multiplier chosen to satisfy the constraint. Again there is no unique solution for

6s. We follow Pykhtin who reported good results when defining

[N (RN (@)
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Appendix D

Table 16: Descriptive statistics of exposure distribution of a portfolio of 11 sectors, representative
in terms of granularity

Sector Exposure No. Minimum 25% Median 5% Maximum
percentile percentile

1 1 1 NA 12 NA 12

2 36 0 13 47 89 43.2
3 69 0 22 6.1 128 1276
4 203 0 17 53 10.5 152.3
5 43 0.1 21 54 10.5 60.0
6 90 0 14 51 9.3 112.2
7 39 0.1 13 49 10.0 42.2
8 55 0.2 18 48 11.3 74.2
9 19 0.1 0.7 3.6 5.8 22.0
10 6 0.2 0.6 30 7.8 85

11 40 0.0 13 58 11.6 68.8

Table 17: Descriptive statistics of exposure distribution of a low granular portfolio of 11 sectors

Sector Exposure No. Minimum 25% Median 5% Maximum
percentile percentile
1 1 11 NA 11 NA 11
2 8 32 47 47 47 47
3 6 92 120 120 120 120
4 17 100 120 120 120 120
5 10 6 47 47 47 47
6 8 58 120 120 120 120
7 9 13 47 47 47 47
8 9 33 47 47 47 120
9 5 4 47 47 47 47
10 2 16 16 315 47 47
11 9 24 47 47 47 47
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Table 18: Scaled PD distribution of a portfolio of 11 sectors, representative in terms of granularity

(in percent)
Sector Exposure No. Minimum 25% Median 5% Maximum
percentile percentile
1 1 10 NA 10 NA 10
2 36 0.0 0.3 0.6 12 74
3 69 0.1 0.9 16 29 218
4 203 0.0 0.9 17 34 155
5 43 0.0 0.8 18 27 6.0
6 90 0.1 11 22 3.6 14.0
7 39 0.0 0.9 16 33 111
8 55 0.0 0.5 10 20 5.6
9 19 0.0 04 11 16 41
10 6 1.0 22 34 41 59
11 40 0.0 0.2 0.3 0.6 22

Table 19: Scaled PD distribution of a low granular portfolio of 11 sector (in percent)

Sector Exposure No. Minimum 25% Median 5% Maximum
percentile percentile

1 1 10 NA 10 NA 10
2 8 0.3 13 13 13 42
3 6 04 15 15 15 51
4 17 0.1 18 18 18 59
5 10 0.1 15 15 15 49
6 8 04 14 14 14 47
7 9 0.1 17 17 17 58
8 9 0.1 0.7 0.7 0.7 24
9 5 0.3 12 12 12 39
10 2 24 24 24 24 24
11 9 0 0.3 0.3 0.3 1

Table 20: Quality distribution of German firmsin the Bundesbank database

Rating grade AAA AA A BBB BB
Sharein percent 2 6 11
PD in percent 0.01 0.02 0.07 0.26 0.87
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