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Abstract

No-arbitrage term structure models are becoming increasingly important to policy makers
and practitioners alike. Several factors justify this trend. First, modeling progress has been
tremendous over the last years, allowing a much better fit of actual yield curve dynamics
and increased model realism (see Dai and Singleton (2002a,b)). Second, increases in
computing power allow the efficient panel estimation of term structure models. Given that
term structure models have implications for both the cross-section and time series
dimension of yields, panel estimation techniques are to be preferred over either cross-
section or time series techniques. Third, term structure models have recently been
extended in ways that are of direct interest to policy makers. Example given, Dewachter
and Maes (2001) model the international term structure of interest rates, taking into
account the role of the exchange rate in a no-arbitrage economy, while amongst others
Hordahl et al. (2002) and Dewachter et al. (2002) jointly model the term structure of
interest rates with the dynamics of macroeconomic variables. The latter approach allows to
study (i) the driving factors behind the term structure and the risk premia in terms of clearly
interpretable macroeconomic variables and their determinants, and (ii) the effects of
monetary policy on the term structure of interest rates and macroeconomic variables within

a consistent no-arbitrage framework.
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1 Introduction

"The quest for understanding what moves bond yields has produced an enormous
literature with its own journals and graduate courses. Those who want to join the
quest are faced with considerable obstacles. The literature has evolved mostly in
continuous time, where stochastic calculus reigns and partial differential equations
spit fire. The knights in this literature are fighting for different goals, which makes
it often difficult to comprehend why the quest is moving in certain directions. But
the quest is moving fast, and dragons are being defeated.”

- Monika Piazzesi (2002) -

The term structure of interest rates has intrigued and fascinated generations
of academic researchers and practitioners. This should not come as a surprise. An
understanding of the stochastic behavior of yields is important for the conduct
of monetary policy, the financing of public debt, the formation of expectations
about real economic activity and inflation, the risk management of a portfolio of
securities, and the valuation of interest rate derivatives. The term structure of
interest rates is forward looking by construction and encapsulates both market
expectations and the expected excess returns (or risk premia) that are required by
investors as compensation for being exposed to different sources of macroeconomic
risk!.

Interest is payment (received) for borrowing (lending) funds over a period of
time. An interest rate is the amount of interest per unit of time as a fraction of
the total amount of funds. The yield of a particular bond is the fictional, constant,
known, annual interest rate that equates the price of the bond to the sum of the
present values of its generated cash flows, assuming that the bond issuer does not
default. Put differently, the yield is a precisely defined measure of the average
return offered to the bondholder over the remaining time to maturity of the bond.
By construction, there is a one-to-one relationship between yields and bond prices,
so studying yields is equivalent to studying bond valuation. We define a zero
coupon bond (ZCB) as a claim that does not promise any payments (coupons)
during its time to maturity, but promises to pay 1 unit of account (or equivalently
100% of the face value) at its time of maturity. This paper focuses attention to
both the time series and cross-section of yields that are implied by default-risk-free
ZCBs. The time t ZCB term structure of interest rates, or yield curve, is the curve
that arises when we plot the yields at time ¢ of ZCBs that mature at increasing

'In general, the price of any financial asset is determined by the expected value of its future
(un)certain cash flows. Hence, the price reflects (rational or irrational) market expectations as
well as investors’ attitudes towards the risks they are exposed to. The term structure will be
particularly well-suited to teach us something about market expectations. By filtering out the
risk premia, market expectations can be isolated and analyzed.



times to maturity.? In practice, the majority of existing bonds pay an annual or
semi-annual coupon, are issued by governments and corporations, and often come
with options attached to them. So, studying yields (prices) of default-risk-free
7Z(CBs might seem uninterestingly restrictive at first sight. However, coupon bonds
can be considered to be portfolios of ZCBs with payoffs and maturities that match
the coupon payments. In the same way, callable or putable coupon bonds can be
regarded to be portfolios of discount bonds and plain options. Finally, the modern
modeling approach to value bonds with credit risk is similar to the one presented
here (see e.g. Duffie and Singleton (1999)).

A model of the term structure of interest rates makes explicit how the yields of
ZCBs, differing only in their time to maturity, relate to each other at each given
point in time. The easiest approach to model the term structure is by making use
of a purely statistical model. Example given, one might perform a factor analysis
or principal component analysis of yield changes and express the covariance matrix
of yields in terms of a few factors that describe their common movement (see for
example Bliss (1997)). Alternatively, regulators often use techniques that fit the
empirical term structure with a specific functional form (e.g. Nelson and Siegel
(1987) and Svensson (1994)). The problem with all these approaches is that one
can quite easily reach a statistical representation of yields that implies an arbitrage
opportunity®. Hence, these models are ill-suited for the economic understanding
of yields and for the applications mentioned in the first paragraph above.

This paper introduces the reader to the modeling of the term structure of
interest rates. In essence, all the so-called term structure models are driven by
the assumption that arbitrage opportunities are absent. The intuitive concept of
absence of arbitrage can be linked directly to the existence of a pricing kernel and
a risk neutral probability measure. The latter concepts are at the heart of the
modern finance literature and play a unifying role in it (see Cochrane (2001) and
Duffie (2001)). Researchers have developed a multitude of term structure models
(TSMs) that are consistent with the absence of arbitrage opportunities during the
1980s and 1990s*. It turns out that imposing absence of arbitrage opportunities

20f course, zero coupon bonds with the same term to maturity might still have different yields
due to differences in default or credit risk, liquidity risk, and income tax rules. The resulting
relationship among these yields for a given time to maturity is refererred to as the risk structure
of interest rates.

Here, we will be concerned solely with the term structure of yields on default-risk-free zero
coupon bonds. The qualifier ”default-risk-free” will be left away in the following since default
risk is considered nowhere in the paper.

3Example given, statistical analyses such as in Litterman and Scheinkman (1988) usually
suggest that a ”level” factor, shifting all yields up or down, accounts for a significant part of the
yield variability. However, Dybvig and Ingersoll (1996) derive that, in order to preclude arbitrage
opportunities, the long-maturity yield must converge to a constant.

For a discussion of the inconsistencies in the Nelson-Siegel techniques, see Filipovic (2000) and
Brousseau (2002).

4For treatments with differing degrees of formalism, consult the review papers of Back (1996),
Bolder (2001), Chapman and Pearson (2001), Dai and Singleton (2002b,2002¢), Fisher (2001),



in financial markets implies strong restrictions on the time series behavior of each
yield and on the cross-section of yields at each point in time. By all means, these
models have made a substantial impact in the financial services industry, proving
that sophisticated finance theory can be of practical use.

The paper is organized in the following way. Section 2 briefly sketches how
probability spaces and probability models are used in the finance literature to de-
scribe real world uncertainty. Section 3 studies absence of arbitrage and how this
central concept translates into the main pricing equations. The main theoretical
building blocks that play a unifying role in modern finance are intuitively discussed
here.® In section 4, we focus attention to the popular affine class of factor TSMs
and show explicitly how we can quasi-analytically solve for the ZCB prices when
making specific assumptions about the underlying stochastic factors and the so-
called prices of risk (or instantaneous expected reward to risk ratios). Moreover,
the strengths and weaknesses of a tractable class of mathematical term structure
models are discussed and the alternative models that have been put forward re-
cently are reviewed. Section 5 concludes.

2 Modeling Uncertainty

Financial economics is about how people allocate scarce resources over time and
under uncertainty. This section discusses in an informal way how the finance
literature approaches (models) uncertainty. The cash flows generated by financial
assets may be known with certainty, but at least the discount rates in the future, i.e.
future interest rates, are contingent on the uncertain future state of the economy.
The economy could be booming in the future, which typically gives rise to relatively
high interest rates, or a future recession could result in relatively low interest rates.
Hence, from the perspective of what is known with certainty today, attaching a
value to even default-risk-free ZCBs will involve dealing with uncertainty in some
way. During the last two decades, the modeling approach to asset pricing under
uncertainty has been streamlined to a more or less unified approach around the
notion of absence of arbitrage opportunities, or equivalently, around the existence
of a pricing kernel or a risk neutral probability measure.

2.1 Probability Spaces

To represent uncertainty, we choose a probability space (€2, F,P), on which all
stochastic processes in this paper will be defined. Informally, the sample space §2

Gibson, et al. (2001), Lund (1998), Piazzesi (2002), Rogers (1995), Subrahmanyam (1996),
Sundaresan (2000), and Yan (2001), or books such as Cochrane (2001), Dothan (1990), Duffie
(2001), Karatzas and Shreve (1988,1991), Mikosch (1999), Neftci (1996), and Shimko (1992).

5To maximize intuition and understanding and minimize on notational burden, we set out
the theory in sections 2 and 3 in univariate calculus. Multivariate calculus does not pose any
conceptual problems, however, and we will make use of it in section 4.
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unites all possible outcomes of the state of the world. Subsets of €2 are referred
to as events. A tribe (or o-algebra) F is a collection of ”interesting” events. Two
extreme cases of a tribe include the minimal one, Fy = {¢, 2}, where ¢ represents
the empty set, and the maximal one, F,, which has as elements all possible subsets
of Q (sometimes referred to as the power set). For our purposes, we are interested
in sequences of events across time, and we will make {2 a set with increasing
dimensions over time. We create a filtration IF, which is a sequence of tribes,
IF = {Fi},~0, Ft C Feo, representing the information of agents through time. A
filtration can be intuitively understood as an ever increasing stream of information,
fixing a history of events. By assumption, agents do not forget, implying that
Fs C Fy, whenever s < t. In the limit, complete information is obtained, F.,. A
probability measure P on (2, F) is a function P : F— [0, 1], satisfying P(¢) = 0
and P(2) = 1. The function P assigns a number (probability) to every set F' € F;.

Armed with a probability space triple (£, F,P), we can define a random vari-
able X as a mapping from (subsets of) Q to R. For example, the monthly return
of a ZCB is a random variable. It can be understood as a black box that takes
qualitative events as inputs and gives a real number, the ZCB return, as an output.
Random events most often have qualitative aspects. A random variable gives a
quantitative flavor to those qualitative events, allowing them to be handled effec-
tively. A continuous stochastic process { X (t)},s, (or simply X (¢)) is a collection of
random variables. Both a random variable and a stochastic process have random
realizations, but the realization of a random variable is a number in IR, whereas the
realization of a stochastic process is a function on the time domain. Put differently,
a stochastic process is random in terms of the trajectory as a whole, rather than
in terms of a particular value at a specific point in time. Intuitively, it represents
a random drawing from a collection of possible trajectories. Choosing a certain
state of the world determines the complete trajectory over time.

A conditional expectation operator, E” [-| F;] = ET [-], is always defined with
respect to a certain information set, say F;, and with respect to a certain probabil-
ity measure, say P. Finally, a P-martingale is defined as a stochastic process X (t)
for which it holds that ET[X (T)] = X(t), for all T > t. There are two additional
technical conditions: X (¢) should be adapted to F; (meaning that X (¢) should be
known at time ¢), and E [| X (t)|] < oo for all ¢.

2.2 Standard Brownian Motion

Standard Brownian motion is a stochastic process named after the biologist Robert
Brown, who claimed to have observed it in pollen suspended in water around 1827.
Much of the scientific work for this model was initially done by Louis Bachelier in
1900 (see Courtault et al. (2000) for a historical account), and later more rigorously
elaborated by Albert Einstein (1905), Norbert Wiener (1923), and others. Proving
that there exists a standard Brownian motion on a probability space (2, F,P) is
not obvious, but always possible. When we say that a stochastic process, such
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as W(t) is a standard Wiener process under a given probability measure P, we
are saying that the probabilities of its possible paths are assigned such that its
central properties (such as zero expected value) are preserved. For instance, when
the probability measure is changed to, say, Q, such that the process no longer has
a zero expected value, it is no longer the same thing. But it can be proven that
another process, say W<(t), does have the property of a standard Wiener process
under the new probability measure Q (the Girsanov-Cameron-Martin theorem).
Consider a discrete-time random walk description:

Wisar = Wi + 1yt (1)
Wo=0, gpne ~ N(Oa At) :

Now consider the continuous-time behavior of this process as At tends towards the
infinitesimal time increment dt, where dt is heuristically defined as the smallest
positive real number such that (Shimko (1992)):

dt* = 0 whenever a > 1. (2)

A standard Wiener process or standard Brownian motion W (t) can be constructed
by taking the limit of the discrete-time random walk (1) with jumps generated by
a standard normal variable with mean zero and variance equal to the time between
jumps, as the time between jumps converges to dt:

W(t+dt)=W(t) +e(t+dt), 3)
W(0) =0, e (t+dt) ~ N (0,dt),

and define dW (t) = W (t + dt) — W (t). Both dW(t) and & (¢t + dt) are referred to
as white noise. Intuitively, W (t) corresponds to the concept of a continuous-time
random walk. Six properties follow by construction®:

(1) EldW(t)] =0,
(ii) B [dW(t)di] = dtE [dW (t)] = 0,
(iii) E[(@w(®)’] =t
() E[(dW@®)dt)?| =dt’E [(dW(t))} 0, (4)
(v) Var[@w®))] =E|[dw )] - (E[@dw D
= 3dt* — dt* = 0,
(vi) Var[dW(t)dt] =E [(dW(t)dt)Q] — E[dW(t)dt]* = 0.

These properties are important because they demonstrate that the variances of
(dW (t))* and dW (t)dt vanish. The expectation operator in (i) and (iii) becomes

SProperties (i), (ii), and (iii) follow from standard statistics and the definition of dWW () in
(3). Property (iv) follows from the heuristic definition of dt in (2). Property (v) follows from the
use of the fourth central moment of a standard normally distributed variable and from property
(éii). Property (vi) follows from properties (i) and (iv).
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redundant if the corresponding variance is zero (properties (v) and (vi)). Hence,
in continuous time, the following heuristic multiplication rules are implied by the
above properties:

rule 1: dW(t)? = dt,

rule 2: dW (t)dt =0, (5)

rule 3: dt? =0,

where the last rule follows from our initial heuristic definition of d¢ in (2). The first
multiplication rule states that the square of this special stochastic increment is a
purely deterministic quantity. It is clear that dW (¢) is a special kind of differential,
a stochastic differential, not to be confused with the ordinary differentials, say dzx,
of the Newtonian calculus. Although dW (t) is a random variable, dW (¢)? is not.
Hence, in calculating Taylor expansions of functions of dWW (t), the second order
term is of order dt and must be retained (see below). This unexpected result is
the foundation of a new calculus with respect to W (t), stochastic or Ito calculus.

2.3 Diffusions and It6’s Lemma
A stochastic differential equation (SDE) or diffusion:
dX(t) = px (X(2),8) dt + ox (X(2), 1) AW (), (6)

with initial condition X (0) = Xj, is a way to model a stochastic process in a
continuous-time framework using a standard Wiener process. The solution to the
SDE (6) is often referred to as an [to process. Equation (6) always has a strong
solution X (¢) if some regularity conditions are fulfilled with respect to py (X (t),1)
and ox (X(t),t) (see Duffie (2001), appendix E). The so-called ”growth” condi-
tions make sure that the solution does not explode, while the so-called ”Lipschitz”
conditions make sure that the solution is unique. A SDE can be understood as
an ordinary (or deterministic) differential equation (ODE) that gets perturbed by
the arrival of new information, modeled as a standard Wiener process. Intuitively,
equation (6) implies that:

EAX(t)] =FEX{I+A)-X@)] =px(X()t) AL, .
Var[AX(1)] = Var[X(t+A8) — X(8)] ~ox (X(0).02A8, D)

such that the standard deviation of the change in X (t), X (¢t + At) — X(¢), is
approximately oy (X (t),t) VAt. The drift function py (X (t),t) accounts for the
evolution of the mean in the discrete-time interval At > 0, whereas the volatility
function ox (X (t),t) accounts for the evolution of the standard deviation.

Applying the traditional ODE approach to the solution of a SDE will fail since
a Brownian motion can be shown to be nowhere differentiable. The stochastic
integral equation (SIE) representation of the SDE in (6) is:

X(t) = Xo+ /MX (X(s),s)ds + /ax (X(s),s) AW (s), (8)

6



where the first integral over time in equation (8) is a traditional integral in the
Stieltjes sense, while the second, integrating over Brownian motion, is a so-called
stochastic or It6 integral. The main contribution of It6 (1951) to the theory of
stochastic processes lies in the definition of an integral when the integrator is a
Brownian motion. The results of this Japanese researcher have proven to be of such
importance that the stochastic calculus is often simply referred to as Ité calculus.
The most useful result of Itd calculus is Ité’s lemma, which is a stochastic
version of the chain rule in ordinary calculus. In essence, Itd’s lemma implies that
any twice differentiable function F'(+) of an It6 process X (¢) is itself an Ito process.
The lemma follows from applying a Taylor series expansion to the function F (-):

10F  10°F
FX(0)+dX(0)t+dt) = F(X (1)) + 35t + 550 (d) +
1 9F 1 °F 1 9*F

———dX(t) + = AX ()’ + = 2z (dX(t
Fi1 X0+ 515 (X )+ 5555 (X)) +
and then invoking the multiplication rules in (5). We finally get the following

equation: \
oF oF 10°F
dF (X(t),t) = T dt + (’3XdX( )+ 39%7
The last term in (10) drops away in Newtonian calculus, yielding the familiar chain
rule result, since any deterministic differential in ordinary calculus is considered
to have a limit of zero if raised to a power greater than 1. In stochastic calcu-
lus, (dX(t))*> does not vanish due to the finiteness of the quadratic variation of
standard Brownian motion (multiplication rule 1 in (5)), even though higher order
terms still vanish. Substituting the SDE (6) in (10) and again invoking the multi-
plication rules in (5), we see that dF (X (¢),t) has drift OF /0t + pux () (OF/0X) +
1/20x (-)* (8*°F/0X?) and volatility ox (-) (OF/8X), or

dX(t) = px () dt +ox (-) dW(t), ,
dF (X (t),t) = (%f + px (4) gﬁ; + 10)( (-)? g;) dt + ( ()S)F(> dW (t).
(11)
The above application of Itd’s lemma expresses the volatility and the drift of the
function of a stochastic process in terms of the volatility and drift of the process
itself and the derivatives of the function. This is the simplest version of [to’s
lemma. It can be extended by assuming that the function F () is a function of a
K x 1 vector X(t) and t, F'(X(¢),t). Correspondingly, in equation (11), dX (t),
px (+), and dW (t) are K x 1 vectors, and ox (-) is a K X K matrix. The multivariate
version of [t6’s lemma can be written as:

dF(X(t)’t)=<%_1:+” ()/g_f(+1” ox (o (')/ai’aX’Ddt (12)

oOF
+ (G e 0) awe

(dX(1))*. (10)

7



where ¢r[-] stands for the trace of the matrix between squared brackets.

2.4 Modeling Interest Rate Dynamics and Interest Rate
Derivative Pricing

The term structure modeling literature builds upon the insights” of derivative
pricing, as pioneered by Black and Scholes (1973). However, it has evolved largely
independently from the mainstream derivative pricing literature, due to some com-
plexities that justify a separate treatment. First, unlike stocks that are in principle
infinitely lived, the market value of a ZCB converges to its known face value at the
fixed date of maturity (referred to as the pull-to-par effect). Furthermore, the price
volatility has to drop to zero at maturity, while Black and Scholes (1973) make the
simpler assumption that the stock volatility is constant. Second, although contin-
uous portfolio rebalancing and, correspondingly, continuous trading is key to set
up a replicating portfolio to offset the risk involved in both strands of literature,
we simply cannot go in the market and buy the underlying interest rate. Unlike
a stock, an interest rate is not an asset that can be traded (though a ZCB is),
and hence the typical dynamic replicating strategy is not straightforward and will
require an additional assumption (see below). Third, it would be inconsistent to
assume that bond prices obey random dynamics while the short term interest rates
are assumed to be constant. The same assumption is less troublesome in the stock
derivative pricing literature, since stock price volatility typically exceeds interest
rate volatility in a substantial way. Fourth, the true underlying of a ZCB is not an
interest rate of a particular maturity, but rather a whole range of interest rates of
different maturities.® We cannot limit ourselves to modeling a unique underlying
ZCB or yield, we need to model the future evolution of the entire term structure
of ZCBs. The latter feature is the key distinguishing feature of term structure
models.

The pioneers of the term structure panel data approach are Vasicek (1977) and
Cox et al. (1985a). They cope with the above complexities by modeling interest
rate dynamics, instead of bond price dynamics. In that way, bond prices naturally

"The main insight of Black and Scholes (1973) may be summarized as follows. If we assume
that the stock price follows a specific random process and that the short-term interest rate is
constant, then we can always set up a portfolio of stocks and short-term bonds that replicates
the payoffs of a European option. Therefore, assuming away arbitrage opportunities, the price
of the European option must equal the known price of the replicating portfolio ("If it looks like
a duck, walks like a duck, and quaks like a duck, then it must be a duck”).

8 An example clarifies the argument. If we are to value a 1-year American option on a 5-year
ZCB, then we do not only need to model the 5-year ZCB, since in one year time the 5-year ZCB
will have become a 4-year ZCB. Moreover, it is important to model both the 5- and 4-year ZCB
in a consistent way, ¢.e. such that they do not permit arbitrage opportunities. This translates
into two types of no-arbitrage conditions: (i) each ZCB has to be priced correctly with respect
to its future ZCB price evolution and (i) the prices across bonds of different maturities at each
specific point in time should not imply arbitrage opportunities.



converge to par, bond price volatilities drop to zero at maturity, and the interest
rate is no longer assumed to be constant. But which interest rate should we
model? In the next section, it is shown that ZCB prices can be expressed in total
generality as a particular conditional expectation of the face value at maturity,
discounted with future short rates, absent arbitrage opportunities. Denote by B(t)
the value at time t of a bank deposit or money market account. Assume that the
instantaneous return from this bank deposit, expressed in general as dB(t)/B(t) =
pg(t)dt + op(t)dW(t), is time-varying but completely deterministic:

dB(t)

Bt r(t)dt. (13)
Integrating equation (13) and then taking the exponent leads to the following
expression for B(t):

t
B(t) = B (0) exp ( / r(s)ds) . (14)
0
We label the expected return of the bank deposit, pgz(t) = r(t), as the short
rate. This bank account can be considered to be a risk free asset, given that the
volatility of its return is zero, og(t) = 0. For this reason, the short rate r(¢) is
also referred to as the risk free interest rate. Let t denote the present time, and T
the time of maturity of a ZCB with price P(¢,T) and continuously compounded
yield y(¢,T) = —In P(t,T)/(T —t). The time to maturity of this ZCB is 7, where
T =T —t. For modeling purposes, it is convenient to assume that at each date
t ZCBs of all maturities 7 exist. In particular, we assume that at each date ¢
there exists a bond that matures the next instant. For this reason, the yield on
that particular ZCB that matures the next instant, r(t), is also referred to as the
instantaneous interest rate. Needless to say, the short rate r(¢) is a theoretical
construct and is not observed in reality. Nevertheless, we will use it as the basis of
our term structure models. The pioneers of term structure modeling argued that
the short rate is a natural state variable, i.e. a variable describing the state of the
economy, in both term structure models and full-fledged macroeconomic models.
Short rate dynamics are most often modeled as a time-homogeneous diffusion:

dr(t) = p, (r(t)) dt + o, (r(t)) dW(t). (15)

Some researchers question the plausibility of the diffusion assumption for interest
rate dynamics. First, they cast doubt on the reasonableness of the Markovian
assumption. Furthermore, if the process can be assumed to be Markovian, the
question remains whether or not it can be identified as a diffusion (which is more
restrictive since a diffusion requires continuity). Are the discontinuities observed in
the discrete data the result of the discreteness of the sampling, or rather evidence
of genuine non-diffusion dynamics of the continuous-time interest rate process,
like the target rate changes at US Federal Open Market Commission meetings?

9



These are nontrivial research questions. By nature, even if sample paths were
continuous, the discretely sampled interest rate data will appear as a sequence of
discrete changes. Papers that discuss this technical issue are Ait-Sahalia (2002)
and Bertsimas et al. (2000). Second, do we assume diffusion dynamics or do we
allow for discontinuities or jumps? Recently, models and estimation techniques
have appeared that are based on jumps or point processes (Das (2000, 2002) and
Piazzesi (2001)).

Modeling the short rate dynamics as in (15) allows us to take into account
some of the salient features of observed interest rate dynamics. First, the Brownian
motion driving process dW (t) accounts for the randomness of interest rate changes.
Second, Cox et al. (1985a) propose a properly scaled version of the Brownian

motion to account for the heteroskedasticity of interest rates: o, (r(t)) = Um .
The finance literature is uniform in its view that interest rate volatility is increasing
in interest rate levels, though there is some disagreement about the rate of increase
(see e.g. Ait-Sahalia (1996a, 1996b), Chan et al. (1992), Chapman and Pearson
(2000)). A nonparametric study of Boudoukh et al. (1998) finds that the volatility
is increasing in the level of interest rates primarily for sharply upward sloping
term structures. They then argue that the finding of heteroskedasticity might be
due to the positively sloped average term structure, and is not a general result
per se. Third, interest rates are more mean-reverting than a random walk would
suggest. The SDE in (15) also allows to introduce mean reversion to the short rate
dynamics, p, (r(t)) = k(0 —r(t)). In this way, interest rates are pulled elastically
towards a certain (possibly time-varying) level. Both from time series plots and
introspection, it may seem obvious that interest rates must mean revert to some
long-run average value. The alternative is that the variance of the short rate
increases without bound as we look further into the future. The halving-time, i.e.
the time it takes to mean revert to half of the current deviation from 6, can be
found by computing the conditional mean of the short rate:

E¢[r(s)] = 0+ (r(t) — 0) e "7, (16)

and by imposing that at the future time s the deviation is only half of the current

deviation, F; [r(s)] — 6 = 1/2 (r(t) — 0). Substituting the latter in (16) leads to an

expression for the halving time s — ¢:

In2
—

halving time = s —t = (17)
Fourth, by restricting the parameter space (see for example the Feller condition in
Cox et al. (1985a)) we can rule out negative nominal interest rates, which would
be an obvious arbitrage possibility.”?

9Transaction costs might occasionally impede negative nominal interest rates to lead to arbi-
trage opportunities. For example, in November 1998, interest rates on Japanese Treasury Bills
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Given that we model the short rate in (15) as a Markov process, all that is
known about future interest rates is impounded in the current short rate. Hence
the value of a ZCB of any maturity may be written as a function of this instan-
taneous short rate and time, P(¢,T7) = P(t,T,r(t)). In this sense, ZCBs are
derivative securities, i.e. securities deriving their value from the underlying short
rate dynamics. As the short rate is assumed to follow a diffusion dynamics, Ito’s
lemma implies that ZCB prices follow diffusion dynamics as well. Running ahead
of things, an arbitrage reasoning will then allow us to derive the ZCB prices as the
solution to a parabolic partial differential equation, subject to a time-of-maturity
boundary condition (see section 4.3).

3 Absence of Arbitrage and Its Implications

An arbitrage opportunity is any zero-net-investment strategy that guarantees a
positive payoff in some future state of the world with no possibility of a negative
payoff in all other future states of the world. Assuming the absence of arbitrage
opportunities within a particular market will turn out to be the fundamental un-
derlying concept that permeates this paper. The basic underlying assumptions of
absence of arbitrage are individual rationality and individuals always preferring
more to less (insatiability assumption). Another more contestable!’ underlying as-
sumption is the absence of transaction and trading costs, taxes and market frictions
in general.

The law of one price asserts that two perfect substitutes must trade at the
same price. If the law would not hold and two perfect substitutes would trade
at different prices, one could sell the expensive asset forward and buy the cheap
one, to end up with an arbitrage opportunity. So the law of one price clearly is a
direct consequence of assuming away arbitrage opportunities. However, it is not
equivalent to the absence of arbitrage assumption. It is more restrictive because it
deals only with the case in which two assets are identical but have different prices.
It does not cover cases in which one asset, say, stochastically dominates another
but may do so by different amounts in different future states of the world.

In this section, we discuss the most important implications of the absence of
arbitrage. Harrison and Kreps (1979) and Harrison and Pliska (1981) formally state
and prove that assuming away arbitrage opportunities within a particular market
is equivalent to the existence of a so-called pricing kernel or price generator. They

became negative yielding an interest rate of —0.004%. Large investors found it more conve-
nient to hold these 6m T-Bills as a store of value rather than holding cash because the Bills are
denominated in larger amounts and can be stored electronically. See Mishkin (2001) on this.

10The presence of transaction costs is important and weakens the implications of absence of
arbitrage by driving a wedge between what the pure absence of arbitrage would predict and what
actually occurs. For example, Obstfeld and Rogoff (2000) argue that, assuming that transaction
costs exist, "one can go far toward explaining a great number of the main theoretical puzzles
that international macroeconomists have struggled with over 25 years”.
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also prove that absence of arbitrage is equivalent to the existence of a so-called risk
neutral probability measure. These mathematical equivalents are jointly referred
to as the "Fundamental Theorem of Asset Pricing”. In Appendix A, it is shown
that the pricing kernels of two distinct markets completely determine the exchange
rate dynamics between the two corresponding currencies.

3.1 Pricing Kernel Dynamics

Whenever an economic environment precludes arbitrage, there exists a positive
stochastic process or pricing kernel, M (t), such that the product of any (marketed
or non-marketed) security price, V'(t), with this pricing kernel is a P-martingale
(Harrison and Kreps (1979) and Harrison and Pliska (1981)):

M)V (t) = El [M(T)V(T)]. (18)
We can rewrite this as: (T
V() = EP lﬁvm] . (19)

This basic asset pricing formula has the interpretation of an expected value under
the historical (or physical, objective, and data generating) probability measure P of
a discounted payoff, where the discounting is subject to uncertainty or randomness.
The ratio M(T)/M(t) is called accordingly the stochastic discount factor (SDF)
and is identical across assets. In an exchange economy, the SDF can be interpreted
as the representative agent’s nominal, intertemporal, marginal rate of substitution
(see Duffie (2001) or Cochrane (2001)). The pricing kernel and SDF are unique in
case financial markets are complete. A complete market is a market in which the
space of all payoffs is spanned by trading strategies in the available assets. Perfect
risk elimination is possible in a complete market, meaning that, say, options can
be artificially created by a suitable buy/sell-strategy in the underlying asset. This
gives rise to a unique price for each derivative security, namely the initial wealth
needed to finance the replicating portfolio. The issue of whether fixed income
security markets are complete or incomplete is not settled and forms a fundamental
empirical question (Campbell (2000)). On the one hand, factor analysis of the term
structure seems to suggest that three or four factors are adequate in describing the
variation in bond returns (Litterman and Scheinkman (1988), Knez et al. (1994)).
On the other hand, a number of recent papers provide support for the hypothesis
that fixed income security markets are incomplete by documenting security-specific
or liquidity-related anomalies in the pricing of fixed income securities (see Heidari
and Wu (2001)).

If markets are incomplete, there exists an infinite number of pricing kernels
(SDFs) that generates asset prices. More specific, any M(t) = M (t)U(t), where
U(t) is a martingale orthogonal to both M (t) and V' (), also prices V (¢), since

E7 [(M(s)/M (1)) V(s)] = ET[(M(s)/M(®)V(s)] ET [U(s)/U(2)]
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= E[[(M(s)/M(#)) V()] (20)
— V().

The price at time ¢ of a ZCB that matures at T', i.e. P(t,T), yielding 1 unit of
account (or 100% of the face value) at maturity, is a special case of the general
equation (19):
M(T) M(T)
P(t,T)=E] |——=P(T,T)| = E} |——|. 21

If we state how M (t) evolves between ¢ and T, we are able to price at time ¢
the bond that matures at time 7.!' The equation makes explicit that a model
to price ZCBs consists of a model for the pricing kernel dynamics. Furthermore,
any diffusion is completely determined by its drift and diffusion. By applying
the pricing kernel definition to the bank deposit in equation (14) and to ZCBs of
different maturities, we can show that, when we assume instantaneous ZCB returns
to follow a geometric Brownian motion!?:

dP(t,T)

—_— = t)dt t)dW (t 22

BT, = e (0 on () aw () (22)
no-arbitrage imposes the drift of the pricing kernel dynamics to be the negative
of the short rate, i.e. u,,(t) = —r(t), and the diffusion to be the negative of the

so-called market price of risk, i.e. op(t) = —A(¢):
dM (t)
— —r(t)dt — \(t)d
M) r(t)dt — X(t)dW (t), (23)

where \(t) is defined as the market price of (interest rate) risk and summarizes

the relation between risk and expected return':

At = L&)“)

n this way, it is unnecessary to assume a representative agent production economy. Though
we take the pricing kernel dynamics as the basis for our analysis, these dynamics are always
embedded in a general equilibrium model and the preferences and production technologies might
be (non-trivially) reverse-engineered from it. Harrison and Kreps (1979) state that there exists
an equilibrium which supports any admissible pricing kernel. As such, any pricing kernel model
can be derived in a general equilibrium framework. Furthermore, since the general equilibrium
requires a wide variety of assumptions about investor preferences, production technologies, and
budget constraints, there may be multiple equilibria which support a given prespecified pricing
kernel.

12 As discussed above, to assume that P(t,T) is a diffusion, we only have to assume that its
underlying is a diffusion and that P(¢,T) is twice differentiable in the underlying such that Ito’s
Lemma holds. Indeed, a twice differentiable function of a diffusion is again a diffusion.

13The market price of interest rate risk reflects both the price of real interest rate risk and the
market price of inflation risk. Although of relevance for bondholders, this dissertation will not
be concerned with the relative contribution of both components. Little empirical work has been
done yet on this important dichotomy (for a recent attempt, see Buraschi and Jiltsov (2002)).

(24)
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Equations (23)-(24) can be derived informally as follows. Assume the bond dy-
namics to obey (22) and write the pricing kernel dynamics in general as:
dM(t)
M(t)

— g (£)dt + o ()W (1), (25)

where p,, (t) and o)/ (t) are unknown and are to be derived from arbitrage con-
siderations. Recall now that M (¢)P(t,7T) is a P-martingale process and hence:

EF [d(M(t)P(t,T))] = 0. (26)
Applying It6’s lemma to the expression between brackets in (26) yields:

pp () + pay () = —on (E) op (1) - (27)

This equation should hold for any ZCB imaginable. When we apply it to the above
defined bank deposit B(t) (see (14)), up(t) = pg(t) = r(t) and op(t) = op(t) =0,
it follows that:

par () = —r(t). (28)

Note also that, combining equations (27) and (28), it follows that the instantaneous
expected return of an asset is equal to the risk free interest rate when the diffusion
of that asset equals zero, or'*:

op(t)=0= pp(t) =r(). (29)

We can also derive an expression for the pricing kernel diffusion o, (t). Using two
ZCBs A and B, differing in their time of maturity (74 # Tp) with prices Py =
P (t,T4) and Pg = P (t,Tg), we can always construct a portfolio of the ZCBs A
and B with weights (3,1 — () that is risk free by picking the portfolio weight /3 such

that o p, (t)+(1 — B) op, (t) = 0, or equivalently 8 = op, (t) / (op, (t) — op, (1)).
Ruling out arbitrage, it follows from equation (29) that the return of the resulting
portfolio should be equal to the risk free rate:

Bup, () + (1 =) ppy (8) =7 (). (30)

Substituting the carefully picked weight 3 into equation (30) allows us to rewrite
the no-arbitrage condition (30) as follows:

poy () =7 (8) _ pp, (8) — 7 (1)
op, (1) opy (1)

HMNote also that risk neutrality, o/ (t) = 0, gives rise to an instantaneous risk free return:

(31)

om (t) =0= pup(t) =r(t).
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So we find that in an arbitrage free economy, the excess return per unit of risk
should be the same for all ZCBs and independent of the time to maturity. We will
define this ratio that follows from no-arbitrage by the market price of risk, A(¢):

e () —r(0)
At) = T (32)
Term structure models solve for all bond prices relative to each other. The only
way to tie down the prices is by invoking this exogenous parameter, the market
price of risk. The market price of risk may be interpreted as the instantaneous
Sharpe ratio for holding a particular bond. Substituting (28) and (32) into (27)
and solving for () results in:

Hence, we have derived equation (23) (and equation (24)), namely that the drift of
the pricing kernel dynamics is the negative of the short rate, i.e. p,,(t) = —r(t),

and the diffusion is the negative of the so-called market price of risk-, i.e. oy (t) =
—A(t). In sum, ZCB prices are determined completely by the short rate, r(¢), and
market price of risk, A(t).

A term structure model imposes constraints on the bond price volatility, o p (t),
and this constraint, when coupled with a specification of the market price of risk,
A(t), has implications for the expected instantaneous excess return of the bond:

pp(t) =r(t) =A()or(t), (34)
= —Couv (dP(t,T)/P(t,T),dM(t)/M(t)) .

Equation (34) teaches us that risk premia originate from covariation with the
pricing kernel. When the asset return dynamics covaries negatively with the pricing
kernel dynamics, the risk premium is positive, and vice versa. The minus sign in
(34) means that investors are willing to accept an expected rate of return below
the risk free rate on securities which tend to have high payoffs when the pricing
kernel (or marginal utility of consumption in a general equilibrium framework) is
higher. This negative risk premium can be considered to be an insurance fee. An
investor will demand and receive a higher compensation for an asset that behaves
cyclically than for an asset that behaves countercyclically (like insurance), since
the former has higher risk (in terms of consumption variability). This is a result
that is already derived in the APT of Ross (1976). Basically, this relation tells you
that an investor expects to get rewarded for taking on risk and that an investor is
expected to pay (a fee) to shift risk away.!?

15Tt turns out that the cash flows generated by stocks are quite likely to change systematically
when the state of the economy is changing. Dividends and capital gains tend to be high in a
business cycle expansion. Conversely, in a recession, they are relatively low. Given that the
pricing kernel moves countercyclically with wealth, the cash flows associated with a stock tend
to move in the opposite direction as the pricing kernel. The covariance in the expression for the
risk premium is negative. Risk averse investors demand a higher return on stocks than a risk
neutral investor would, since they are very sensitive to the risks associated with these securities.
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3.2 Risk Neutral Pricing

There is another well-established equivalent approach to conduct modern finance
research: risk neutral pricing. The ”Fundamental Theorem of Finance” also states
that any security price, when scaled by the money market account (see (13) on page
9), is a martingale under a specific, artificially constructed probability measure Q
(for this reason Q is often referred to as a martingale probability measure). This
holds for all assets and thus also for a ZCB. According to the theorem, P(¢,T)/B(t)
is a Q-martingale, or:
B(t) " | B(T)

The existence of @ such that this result holds is formally proven in Harrison and
Kreps (1979) and Harrison and Pliska (1981). The probability measure Q is unique
in case markets are complete. Formally, this change of probability between the true
and risk neutral measure is defined by the Radon-Nikodym derivative of Q with
respect to P:16

Pt,T) 4 lP(T, T)] (35)

10— exp (—; [Apas— [ A(s)dw<s>) - (36)

We can rewrite (35), using the bank deposit definition (14) and the fact that

P(T,T) =1, as:
P(t,T) = EZ |exp (—/r(s)ds)} : (37)

t

which implies that the ZCB price is the expected value under Q of the face value
continuously discounted back in time with the risk free rate. Equation (37) explains
why @ is referred to as the risk neutral measure and the approach as risk neutral
pricing. Every ZCB earns a risk free return under this (risk neutral) measure.
Under Q it is as if we are valuing the security as a risk neutral investor. All of
the investors’ attitudes about the riskiness of future discount factors (and possibly
future cash flows) are hidden in the transformation from P to Q.

Equation (37) determines the ZCB price completely. It tells you that prices of
ZCBs only depend on the distribution of the short rate r(¢) under Q.'" Previously,

16This special process dQ/dP can be proven to be a martingale process and it has to satisfy
the so-called Novikov condition, E [exp (ftT )\(S)st)] < 00, implying that the variation in A(t)
must be finite. Also, for dQ/dP to exist, P and Q should be equivalent measures. Intuitively,
what this means is that events that cannot occur in the first place, can not be made possible by
simply changing the probability measure from one to the other. Likewise, events that can occur
in the first place, cannot be made impossible by changing the probability measure.

17S0, in valuing ZCBs we do not have to care about the actual interest rate dynamics under P
or the ZCB price drift under P. We will be concerned with P only when trying to account for the
real world dynamics of the interest rates. This measure P is often used to model an underlying
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we have seen that r(¢) and A(¢) are the basic ingredients of the pricing kernel
approach. Given the equivalence between the two approaches, the market price of
risk A(t) has to determine the probability shift from P to Q. This implicit link
between the market price of risk A(¢) and the jump from P to Q is made explicit by
the Radon-Nikodym derivative and the Girsanov-Cameron-Martin theorem. The
latter shows that the change in probability measure can be considered to imply a
change in the drift (leaving the volatility unchanged) of the Wiener dynamics, or:

WP(t) = Wo(t) — / A(s)ds,
0 (38)

dWP(t) = dW<(t) — \(t)dt,

where it holds that E2 [dW(t)] = 0 and EF [dWP(t)| = 0.

We have already established that the expected return of an asset (under the
data generating probability measure P) equals the risk free rate plus an expected
excess return or risk premium (equation (34)). Finance people construct an artifi-
cial risk neutral probability measure Q such that you get rid of this risk premium
(in expected value). The change in measure implies a change in drift. The funda-
mental theorem says we can always find such a Q whenever there are no arbitrage
opportunities in the economy. Under Q, it is as if we were a risk neutral investor
and the solution to the valuation problem simplifies to a discounting exercise where
the risk free or short rate is used as the discount rate.

Finally, we can now show how It6’s lemma naturally brings us from the pricing
kernel dynamics in equation (23) to the risk-neutral valuation expression (37).
Indeed, given the dM (t)/M (t) dynamics expressed in (23), an application of 1t6’s
lemma to d1n M (t) yields:

dln M(t) = (—r(t) — 3N ()) dt — M)W (). (39)

2

Integrating (39) from ¢ until 7" and then taking the exponential results in:

MO — o (— [ris)ds =4 [ Asyds — [ A(s)dw<s>> . o)

asset (the interest rate dynamics), while the measure Q is used to price interest rate derivatives
(ZCB prices). Of course, if we are interested in both the cross-sectional and time-series dimension
of term structure models, we will need to specify A(t) as well.
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Substituting this formula in the ZCB pricing equation (21) above, we get:

Pt,T) = EP |exp (—% [ A(s)2ds — [ )\(s)dW(s)) exp (— / r(s)ds) (41)

t

-~

dQ

dp
This explains the specification of the special process for the Radon-Nikodym deriv-
ative in equation (36). Substituting (36) finally leads to the risk neutral Q-formula:

P(t,T) = EP %exp (— / r(s)ds) (42)
— EP |exp (—/r(s)ds) : (43)

where the last step is a continuous state space extension of the more intuitive
discrete state space change of measure (see appendix C' in Duffie (2001) for a
proof).

4 A Bird’s Eye View of Term Structure Models

Term structure models abound and are typically categorized on the basis of the
nature of their equilibrium, the number of state variables, and their empirical
tractability. In this section, we briefly sketch these (possibly overlapping) catego-
rizations. Our main focus will be on the strengths and weaknesses of the empirically
tractable class of term structure models.

However, encompassing all these term structure model categorizations is the
choice for a continuous time or discrete time framework. In the literature, con-
tinuous time models prevail for a number of reasons. First, theorists prefer the
continuous-time setting for reasons of tractability. One can work with differential
equations, rather than with difference equations. Moreover, It calculus allows for
the explicit and simple computation of any twice differentiable nonlinear trans-
formation of diffusions. Second, diffusions are attractive for empirical researchers
because they are fully characterized by their instantaneous conditional mean and
variance. Finally, the continuous time setting also plays a conceptual role. Since
Black and Scholes (1973), many asset pricing and portfolio choice models have
assumed dynamic trading in continuous time. This assumption often allows mar-
kets to be complete and hence derivative payoffs or consumption trajectories to
be spanned, even when there exists an infinite number of possible states of nature
and only a few traded securities.
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4.1 Absolute versus Relative Pricing or General versus
Partial Equilibrium

One can categorize the different term structure models according to the charac-
ter of the equilibrium. Although most financial models are pure exchange models
and are not concerned with production economies, it is important to ensure that
there is no inconsistency between the asset return processes that are assumed and
the underlying production economy. Cox et al. (1985a), Longstaff and Schwartz
(1992a, 1992b), Nielsen and Sad-Requejo (1992), and Longstaff (1989) all develop
complete or general equilibrium theories of the term structure. They take as given
the exogenous specifications of the national (or international) economy, such as
tastes, endowments, productive opportunities, and beliefs about possible future
states of the economy. Then they endogenously derive the prices of ZCBs of dif-
ferent maturities from these exogenous specifications. Anticipations, risk aversion,
investment alternatives, and preferences about the timing of consumption all end
up playing a role in determining the term structure, in a way that is consistent
with maximizing behavior and rational expectations. It turns out to be difficult
to derive closed-form results for arbitrary stochastic processes. This general equi-
librium approach is also referred to as absolute pricing. In absolute pricing, each
asset is priced by measuring its exposure to fundamental sources of macroeconomic
risk.

Relative pricing is less ambitious and tries to price assets given the presumably
correct prices of related assets. The underlying risk factors, the determinants of
interest rates and the impact of changing interest rates on the macroeconomy are
not analyzed. Most theories of the term structure fall within this framework and
are partial equilibrium in nature. The no-arbitrage approach to the theory of the
term structure is intended to explain the arbitrage-free pricing of ZCBs of different
maturities and is pioneered by Vasicek (1977), Brennan and Schwartz (1979) and
Dothan (1978). Assuming a stochastic evolution of one or more state variables
(risk factors), we then derive the prices of all ZCBs by imposing no-arbitrage.
Even with these less ambitious partial equilibrium models, the issue of consistency
arises. This amounts to a requirement that assets be priced consistently with
respect to each other. This requirement can be stated as an arbitrage condition
within the model: the pricing of different assets should imply the same market
price of risk. Again, it turns out to be difficult to derive closed-form results for
arbitrary stochastic processes.

Note that in general equilibrium models (such as the capital asset pricing
model), the appropriate measure of security risk is not its standard deviation,
but the extent to which the security adds to the standard deviation of a well-
diversified portfolio (or, the extent to which it adds to the systematic risk). The
relative pricing framework takes the general equilibrium as given and as fully re-
flected in the price of the underlying asset. Risk is measured in isolation and the
volatility is the only measure of risk recognized within derivative pricing.
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4.2 Single- versus Multi-factor Models

With respect to term structure modeling, one can either assume that the complete
yield curve is determined by a finite number of Markovian ”state variables” or
”stochastic factors”, and model the evolution of these factors, or one can directly
model the evolution of the entire yield curve. In this paper, we consider exclusively
the former approach. Ho and Lee (1986) are the pioneers of the latter approach in
discrete-time. The corresponding continuous-time version emerged with the work
of Hull and White (1990), Black et al. (1990), and Heath et al. (1992). The
major advantage of their approach is that the model is tailored to fit the current
market data perfectly. If the aim is to price derivative securities, a perfect fit of
the yield and volatility curve is of paramount importance. The disadvantage is
that supposedly constant model parameters are to be re-estimated continuously
as market information arrives. In this sense, the data point to a misspecification
in the model at each point in time. If the aim is to explain the term structure
movements in a consistent way, the finite factor approach is better suited. In the
end, both classes of models have their relative weaknesses and strengths and must
be applied with care. Recently, attempts are being made to link both classes into
one encompassing model (Brandt and Yaron (2001)).

Factor term structure models compress the huge amount of cross-section and
time series ZCB yield information into the behavior of one or more unobserved or
observed factors. The dynamics of the factors determine the shape of the yield
curve at each given time point (cross-sectional dimension) and the movement of
each maturity-specific yield through time (time series dimension). Typically, there
exist significant correlations among yields of ZCBs with differing maturities. This
suggests that a limited amount of factors might be able to capture the dynamics
of the entire yield curve. The exact amount of factors will be determined by the
data.

In single-factor models of the term structure, the whole term structure may be
inferred from the level of the single factor, which is traditionally taken to be the
short rate. Nowadays, single-factor models are prone to serious criticisms. First,
the single-factor modeling assumption implies that changes in the yield curve and
hence bond returns are (instantaneously) perfectly correlated across maturities.
Not surprisingly, this assumption is easily contradicted by the empirical evidence.
Second, the shape of the yield curve is severely restricted. Specifically, the single-
factor models can only accommodate yield curves that are monotonically increas-
ing, monotonically decreasing, or normally humped (i.e. —~-shaped), for a given
day. An inversely humped (i.e. —-shaped) or any other yield curve cannot be
generated. Third, one-factor time-invariant parameter models tend to provide
a relatively poor fit to the actual yield curve observed in the market (see e.g.
Dewachter and Maes (2000) for a comparison of one-factor versus two- and three-
factor model fits). More extensive empirical evidence (see e.g. Dai and Singleton
(2000)) points strongly towards multifactor extensions.
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A step towards a more realistic approach to the relative pricing of ZCBs of
different maturities would be to allow for more underlying factors, leading to the
multi-factor models of the term structure. In this class of models, the short rate
is written as a sum of K state variables, implying that the ZCB prices are the
product of single-factor bond prices:

r(t) =r(X(8) = 2 Xi(#). (44)

This approach facilitates the model’s empirical analysis. For examples of models
that follow this approach, see Langetieg (1980), Chen and Scott (1992), Longstaff
and Schwartz (1992a), Sun (1992), Pearson and Sun (1994), Dai and Singleton
(2000, 2002a), Dewachter and Maes (2000, 2001) and Cassola and Luis (2001). A
review of the empirical properties of the term structure (see e.g. Dai and Singleton
(2000)) shows the substantial improvements of fit offered by these multi-factor
models. For example, short rate changes need not depend only on the current
short rate level, but possibly also on other unobservable factors (a time-varying
stochastic long-term mean, stochastic volatility, etc.). Also (linear combinations
of) observable yields or macroeconomic variables can be taken to be the factors (see
for example Duffie and Kan (1996), Berardi (2001), and Dewachter et al. (2001a,
2002).

For examples of models in which the factors have specific meanings, see Bren-
nan and Schwartz (1979, short-term interest rate and consol rate), Richard (1978,
real rate and expected inflation), Longstaff and Schwartz (1992, short-term interest
rate and volatility of interest rate), Schaefer and Schwartz (1984, long-term interest
rate and the spread between the long-term and short-term interest rates), Cox et
al. (1985a, inflation rate and short-term interest rate), Andersen and Lund (1997,
short-term interest rate and volatility of interest rate), Balduzzi et al. (1996, three
factors; 2000, short rate and stochastic mean), Berardi (2001, output gap and in-
flation), and Dewachter et al. (2001a, 2002, output gap, inflation, central tendency
of output gap and inflation, and real interest rate). In general, generalization to
multiple factors requires care if the factors are given a specific economic interpreta-
tion. The relationship between the factors has to be taken into account explicitly,
in order to be consistent with the no-arbitrage requirement. For example, if the
two factors are a short-term and a long-term interest rate, it should be borne in
mind that the long-term bond is related to a series of short-term bonds in a risk-
neutral world, and hence the bond price movements of the long and short end have
to be tied together in some way.

4.3 Affine Term Structure Models

The purpose of a multi-factor TSM is to provide a consistent (i.e., arbitrage-
free) explanation for the dynamics of the term structure. We discuss the popular
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class of affine TSMs and the inevitable trade-off between empirical flexibility and
theoretical rigor in choosing a model from this class.

4.3.1 Solving the Term Structure partial differential equation

The partial differential equation that every ZCB price needs to satisfy is derived
from basically three fundamental assumptions.

(1) ZCB prices are functionally related'® to one or more, say K, stochastic factors
X(t):

Pt,T)=P(tT,X(1). (45)
(i) The underlying factors follow time-homogeneous diffusions:
dX(t) = p% (X)) dt + ox (X () dWT(t). (46)

(#ii) Arbitrage opportunities are absent. The assumption of no arbitrage opportu-
nities in our economy leads to (23), rewritten here in a multivariate setting:
dM (t)
M(t)

= —r(t)dt — A(t) dW(1). (47)

Consider now a particular bond (fix the time of maturity 7'). In the absence of
arbitrage, the drift and diffusion of any ZCB price dynamics are tied together:

pp(t) = r(t) = op(t)A(t), (48)

where each ith component of A(t) is the market price of risk associated with the ith
risk factor, since it gives the risk premium required per unit of volatility associated
with the ith source of risk W;(t). Equation (48) is the multivariate equivalent of
equation (24). If X (¢) follows diffusion dynamics, then P (¢,T, X (¢)) will follow
diffusion dynamics as well, provided the function P (¢, 7, X (¢)) can be differentiated
twice. An expression for the instantaneous holding return dP(¢,T)/P(t,T) can be
derived using [to’s lemma:

ST P () dt+ op (8) WP (1), (49)

1 oP 0P 1 %P
P (1) — Py Pl o8 1 '
E0) = B (5 0 5 + G+ 5T o 0 0) 55 )

(50)
1 or’
or ) = paT) (a_X ox @) -

181t is important to realize that we do not assume that the relationship between P(¢,T) and the
factor(s) is known. On the contrary, the entire purpose of the following is deriving that function
endogenously from the above assumptions, especially from the assumptions about absence of
arbitrage.
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Substituting (50) into (48) and reorganizing somewhat, we get a parabolic partial
differential equation (PDE):

or o 0P 1 ) 0P | _
E + Hx (t) ﬁ + §TT 0x (t) ox (t) m =T (t) P (taT) ; (51)
with 4% (¢) defined as:
S (1) = 1% () —ox (1) A(t). (52)

Equation (51) is often referred to as the term structure PDE. There is an important
difference between the term structure PDE (51) and the Black and Scholes (1973)
PDE. The term structure equation (51) is not preference-free unlike the Black
and Scholes (1973) formulation (given the presence of the market price of risk
parameter, A(t)). The reason for this is not hard to see. The Black and Scholes
model takes the stock price, which reflects the market price of risk, as given. In
contrast, the factor term structure model solves for all bond prices relative to
each other. The only way to tie down the prices is by invoking the exogenous
parameter, the market price of risk. P (¢,7T) is the solution to this parabolic PDE,
taking into account the boundary condition for the payment to be received at
maturity, P (T,T) = 1.

For a given time of maturity T, we can replace OP/0t in (51) with —0P/0r.
Duffie and Kan (1996) show that further restrictions on the dynamics of the state
vector under Q must be imposed for the PDE (51) to yield a tractable ZCB price
solution. More specifically, it is required that r (), u% (t), and ox (t) ox (t)" are
all affine functions of X ().

They define an affine?” term structure model (ATSM) as a TSM where prices
(yields) are exponential-affine (affine) functions of the state variables X (t):

P(X(1),7) = exp (~A(r) — B(r) X(1)).
(53)

where A(7) is a scalar and B(7) is a K x 1 vector of complex functions of drift

9Tn addition to valuing ZCBs and determining the term structure, these models can handle
any other interest rate derivative problem. Basically, the only thing that changes is the boundary
condition at maturity. For example, Cox et al. (1985a) value European call options on interest
rates. Applications to futures contracts, variable rate instruments, mortgages, loan commitments,
etc. have also been undertaken. A recent example is the pricing of coupon bonds and swaptions
(Singleton and Umantsev (2002)).

20A function f (-) is defined to be affine if it is constant-plus-linear in its argument (strictly
speaking, linear would suffice). A univariate example would be: f(x) = a+bz, for real parameters
a and b.
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and diffusion parameters of the state variable dynamics.?! Substituting (53) and
affine expressions for r (t), u% (t), and ox (t)ox (t)' into (51) results in an affine
expression at the left and right hand side of the term structure PDE. Equalizing
the constants and X (¢)-coefficients on the left and right hand side, respectively,
leads to a system of ODEs which is far easier and less time-consuming to solve
than the PDE in (51). A(7) and B(7) are the solutions to this system of possibly
coupled ODEs with initial conditions A (0) = 0 and B (0) = Og. The resulting
system of ODESs is relatively easy to solve using stable, accurate, and fast numerical
integration techniques, such as the Runge Kutta 4th order algorithm that is used
in this dissertation. For this reason, we refer to these solutions as quasi-closed-
form solutions. We can find truly analytical or closed-form solutions only in some
special cases (e.g. orthogonal multifactor Cox et al. (1985a) model). Researchers
have put in great effort to find these tractable models since it makes it possible to
price bonds of all possible maturities in a consistent way.

4.3.2 Parameterizing Affine Term Structure Models

Without loss of generality, Dai and Singleton (2000) parameterize the class of affine
factor term structure models. They write the affine factor dynamics under Q as:

AX (1) = puf (X (1) dt + ox (X (1) dW(1), (54)
PR (X)) = K(6-X(), (55)
ox (X(1) = SR, (56)

where K, O, and ¥ are K x K, K x 1, and K x K matrices, respectively. R(t) is
a diagonal K x K matrix with the ith diagonal element given by:

[R(1)]; = i+ B:X(8), (57)
where «; is a scalar and f3; is a K x 1 vector for each i. The short rate is also
assumed to be affine in the state variables:

r(t) =r(X(t)) =60+ 8 X(t), (58)

where g is a scalar and 6 is a K X 1 vector. This setup results in the following
system of ODEs:

dA vl gl 1K / 2
d—T—@KB(T) 52[23(7—)]1@1_607
(59)
dB - 1 E
dT__K 5; ]B+5

2n the equation, B(7) stands for the sensitivity of ZCB prices to changes in the factors and
should not be confused with the bank account, defined on page 9. In the following, it should be
obvious to which we are referring.

24



with initial conditions A (0) = 0 and B (0) = 0.

Next, Dai and Singleton (2000) uniquely categorize the family of K-factor
ATSMs into K + 1 subfamilies Ay(L), L = {0,..., K}, of ATSMs based on the
number of factors, U = {0, ..., L}, that are present in the conditional factor vari-
ances. They show that every ATSM can be rewritten in a canonical form with
identical econometric implications for the short rate and, hence, for bond prices.

Notice that Duffie and Kan (1996) require that the factor drift under Q is
affine. They are silent though about the market price of risk vector A (¢) and the
corresponding drift under P. However, in order to empirically implement ATSMs,
we need to know the dynamics of X (¢) under the actual measure P. Duffee (2002)
and Dai and Singleton (2002a) parametrized the market price of risk vector A ()

as follows:
A(t) = /RN + /R= ()N X (1), (60)

where A\? is an K x 1 vector of constants, A¥ is a K x K matrix of constants, and the
diagonal matrix R~ (¢) has zeros in its first U diagonal entries and 1/ (oq +6,X (t))
in entriesi = {U + 1, ..., K'}. Under this particular assumption for A(t), the process
for X (t) also has an affine form under P:

dX(t) = K (0 — X(t))dt + S\/R(t)dW ™ (t), (61)

where _
K=K —Xd,+X\¥,
o (62)
O=K"! (K@ + zq>1) ,

where the ith row of the K x K matrix & is [)\0} ﬁ/» and where ®; is a K x 1

vector whose ith element is [)\O} ;. Affine factor dynamics under the physical
measure allow for the explicit calculation of the conditional mean and variance of
the factors. In turn, estimation techniques that rely on these two moments can be
used (such as the Kalman filter QML approach).

The equations (54), (58), and (60) define the so-called class of essentially affine
TSMs, in contrast to the more restrictive class of completely affine TSMs where
the parameter vector ¥ is restricted to be a K x 1 vector of zeros. The latter
are analyzed in Duffie and Kan (1996), Dai and Singleton (2000), and Dewachter
and Maes (2000, 2001), the former in Dai and Singleton (2002), Duffee (2002), and
Dewachter et al. (2001a, 2002a).

4.3.3 Admissibility Conditions

Any sensible parameterization of ATSMs must be theoretically admissible and
econometrically identified. Dai and Singleton (2000) discuss the parameter re-

22Note that the loadings are completely determined by the specification of the risk neutral
dynamics of the state variables X (t).
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strictions that these two requirements place on the ATSMs discussed above. An
ATSM is defined as admissible whenever the conditional factor variances [R(t)],, ,
[R(t)],, = i + B,X(t), are positive for arbitrary choices of the state vector. Put
differently, o; and [3; cannot be picked arbitrarily, since [R(t)],; needs to remain
positive for all possible values of the state vector X (¢).2 These (and other) para-
meter restrictions play a role of paramount importance in the ongoing search for
the ”correct” diffusion model of the term structure movements, as will be discussed
next.

The academic literature has mainly focused attention on ATSMs, since this
class of models yields quasi-closed-form bond pricing formulae and can easily han-
dle multiple state variables. However, there are reasons to look for factor TSMs
outside the affine class. First, all but one family of ATSMs face a trade-off be-
tween the structure of ZCB price volatility and admissible nonzero (un)conditional
correlations among the state variables. This hampers their empirical performance.
For the multivariate Gaussian ATSMs in the Ay(K) family, there are no admis-
sibility restrictions, but the Ay(K) class is by construction unable to account for
the heteroskedasticity in interest rates. Outside the Ag(K) class, imposing admis-
sibility conditions becomes necessary and the conditions become increasingly more
stringent when U, the number of factors that are present in the conditional vari-
ance matrix, increases from 0 to K. The Ax(K) class imposes the largest number
of admissibility conditions on its parameter space, but allows for the most flexi-
bility in modeling the (un)conditional volatility. As shown by Dai and Singleton
(2000), when U equals K, this effectively implies that the factors must have non-
negative unconditional and zero conditional correlations. A second reason to look
outside the class of ATSMs is the omitted nonlinearity in the data (see the results
of Dai and Singleton (2000)). A third reason is that only Ax(K) models within
the class of ATSMs is able to ensure a strictly positive interest rate. Therefore,
ATSMs cannot allow for negative unconditional correlations among the state vari-
ables whilst guaranteeing positivity of the nominal interest rate. While it may be a
worthwhile sacrifice if the empirical performance of the model can be significantly
improved and if the real probability of having negative interest rates, albeit posi-

ZDai and Singleton (2000) equalize the ”admissibility” property of ATSMs with ”well-defined
bond prices”. However, from their definition of admissibility, it is obvious that admissibility
is only concerned with the short rate diffusion, whilst it remains silent on the short rate drift.
Strictly speaking, ”well-defined” (admissible) bond prices do not rule out negative short rates,
and, in the case where one can hold cash, the presence of arbitrage opportunities. When a ZCB
would offer a negative interest rate, a short position in this ZCB and a long position of an equal
amount of money, both held until the time of maturity of the ZCB, would yield an arbitrage
opportunity.

In my opinion, the only strictly arbitrage-free, theoretically admissible, and econometrically
identified ATSM is the canonical model of the Ax (K) class. All other classes are not arbitrage-
free in the strictest sense. For an appreciation of the small probability of negative interest rates
within the class of Gaussian models, see Rogers (1996). He shows that the small probability might
be important when looking at knockout bonds and, more importantly, long maturity bonds.
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tive, is small given appropriate choices of parameter estimates, some practitioners
and academics alike hold strong opinions against term structure models that allow
for negative interest rates.

The above discussion forces one to make the trade-off between empirical flexibil-
ity and theoretical rigor in choosing a particular ATSM. Do we favor a theoretically
flawed, but empirically flexible model, or do we stick to a theoretically more cor-
rect model that might not be able to fit the data as well? Researchers choose
the model that suits their purposes best. They use the most flexible TSM model
when trying to explain the failure of the expectations theory, since interest rate
heteroskedasticity is not key to explaining the puzzle. They choose a model from
the Ak (K) class if the short rate is required to be strictly positive. Of course, they
tie their hands in doing so, but there is nothing conceptually wrong with choosing
to explore a particular specification, of course.

4.3.4 Beyond the Affine Class of Term Structure Models: Quadratic
Models

From the above, it is clear that ATSMs are not able to ensure positivity of in-
terest rates without having to impose parameter restrictions and without loosing
flexibility on the unconditional correlation structure amongst the state variables.
Moreover, ATSMs are not able to capture the non-linearities in the dynamics of
interest rates. The existence of the latter have, however, been demonstrated by
Att-Sahalia (1999) and others.

These problems are inherent to ATSMs and motivate the quest for non-affine
models that do not suffer from these shortcomings. Roughly speaking, only one
alternative class of models has been proposed: the quadratic TSMs (QTSMs), de-
veloped by Longstaff (1989), Beaglehole and Tenney (1991, 1992), and Constanti-
nides (1992), and put in canonical form by Ahn et al. (2002) and Leippold and Wu
(2001, 2002). In these models, ZCB prices are expressed as quadratic-exponential
functions of the state variables and, similar to the ATSMs, the loadings can be
solved analytically (for the one factor-case and for independent factor multi-factor
cases) or by solving a system of ODEs (in the general multi-factor case).

QTSMs can potentially overcome the difficulties of ATSMs. They allow for
strictly positive nominal interest rates without imposing restrictions on the cor-
relation structure of state variables. The state variables in the canonical QTSM
are all Gaussian. The non-negativity of the short rate is assured by the quadratic
relationship between the short rate and the Gaussian (possibly negative) state
variables. The interest rate and bond prices in the QT'SM exhibit heteroskedastic
conditional volatilities even though the state variables themselves do not exhibit
this feature. The advantage of QTSMs over ATSMs, next to the nonexistent trade-
off, is that in the former class all of the included state variables can contribute to
the generation of stochastic volatility. The volatility of the interest rate is pro-
portional to the level of the state variables. The QTSM does not result in less
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flexibility in specifying conditional correlations among the state variables since
the conditional volatilities are induced by the quadratic structure rather than the
processes of the state variables. In other words, they are free of the trade-off be-
tween heteroskedastic volatilities of the short rate and negative correlation among
factors, while maintaining admissibility. Moreover, QTSMs have the potential to
capture omitted non-linearities.. The quadratic term in bond yields adds nonlin-
earity to the dynamics. Within the affine class, one often uses multiple factors to
generate the observed non-linearities in the interest rate dynamics. In contrast,
nonlinearity is explicitly built into the quadratic model.

The major drawback of the QTSM relative to ATSMs lies in the estimation.
Estimation of QTSMs is complicated because of the fact that there is not a one-
to-one mapping from observed yields to the state variable vector any more. This
is due to the quadratic dependence of the short rate on the state variables. Given
this indeterminacy, non-linear filtering methods are called upon to estimate the
model-implied state variables. Ahn, et al. (2000) circumvent this problem by
using simulated method of moments (SMM) which effectively gives observable state
variables through simulation. Then they use the reprojection methods proposed
by Gallant and Tauchen (1998) to estimate the conditional factor mean.

The task of stating consistent conclusions about the preferred class of TSMs or
about the extent to which modern TSMs fit economic moments is still daunting and
ongoing. Ahn et al. (2002) mingle the classes of ”purebred” models together, in
order to optimize the empirical performance of the resulting ”hybrid” model. They
find that, when more than the two first conditional moments are to be fit, the pure
QTSM outperforms all other models. Brandt and Chapman (2002) compared the
classes of three factor models in terms of matching the economic moments of the
yield curve and conclude similarly that a Gaussian QTSM dominates every ATSM.
However, this is still early evidence and given the difference in data samples and
available estimation methods, much robustness work remains to be done.

4.3.5 Joint Models of Macroeconomic and Term Structure Dynamics

A related, recently developed class of models jointly describes the term struc-
ture of interest rates and a selection of macroeconomic variables (see Ang and
Piazzesi (2002), Ang et al. (2003), Berardi (2001), Dewachter et al. (2001a, 2002),
Dewachter and Lyrio (2003), Evans and Marshall (2001), and Hordahl et al.
(2002)). There are strong incentives to investigate the relationship between the
dynamics of macroeconomic variables and the yield curve. First, there is strong
evidence that the term structure predicts movements on macroeconomic activity.
See for example Jorion and Mishkin (1991), Estrella and Hardouvelis (1991), Es-
trella and Mishkin (1996, 1997, 1998). The fact that a negatively sloped term
structure predicts a recession is born out by the data. Every recession after the
mid-1960s has been predicted by an inverted yield curve within 6 quarters of the
impending recession. Only once did an inverted yield curve not result in a re-
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cession over this period. Evidence with respect to the euro area and individual
member states seems less convincing (Berk and Van Bergeijk (2000)). Second, the
traditional term structure model approach is not entirely satisfactory. The models
compress the information that is contained in a panel of yield data into typically
3 latent factors. These factors are then labeled "level”, ”slope”, or ”curvature”,
according to the effect they have on the yield curve. Notwithstanding the insight
that can be gained from a latent factor approach for risk management and the
understanding of asset price behavior, we are still basically explaining yields with
yields (Duffie and Kan (1996)). It is interesting to be able to interpret and iden-
tify what is underlying these latent factors in terms of observed or unobserved
macroeconomic variables, such as output gap, inflation, or long-term expectations
of output gap and inflation. Dewachter et al. (2001a,2002) study exactly these
kinds of questions within a continuous-time joint model of the macroeconomy and
the yield curve. Berardi (2001) and Ang and Piazzesi (2002) also include macro-
factors into a formal term structure model, but rely on some kind of approximation
for the macroeconomic factors. Hence they are unable to give the unobservable
factors a clear macroeconomic interpretation. Wu (2000) and Buraschi and Jiltsov
(2002) take up the daunting task of developing a general equilibrium model. For
the intuition on how to link the term structure of interest rates to macroeconomic
variables dynamics, the reader is referred to Appendix A.

5 Conclusions

No-arbitrage term structure models are becoming increasingly important to na-
tional regulators and practitioners (see the recent ECB and Fed working papers
of Cassola and Luis (2001), Brousseau (2002), Hordahl et al. (2002), and Evans
and Marshall (2001)). The following four factors account for the increased interest
in these models. First, term structure models are rooted in a framework where
arbitrage opportunities are excluded in equilibrium. Given that bond markets are
large and liquid, any reasonable equilibrium characterization of bond prices and
yields should exclude the presence of arbitrage opportunities. Empirical or statis-
tical models, popular with regulators and practitioners, are in general unable to
impose this condition. Second, tremendous theoretical progress has been made the
last decade in identifying and relaxing the restrictive assumptions in the extant
no-arbitrage term structure models. For example, while the pioneering models of
Vasicek (1977) and Cox et al. (1985) assumed a single risk factor is underlying the
yield curve, correlated multi-factor models are now standard practice.?* Third, the

24This paper does not review the empirical findings with respect to the modern term structure
literature. A good review can be found in Dai and Singleton (2002a,b). Dai and Singleton
present conclusive evidence for the U.S. that a particular model within the class of ATSMs is
able to match all the key empirical findings reported by Fama and Bliss (1987) and Campbell
and Shiller (1991) at the mazimum likelihood estimates of their model parameters.
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phenomenal increase in computing power allows the efficient panel estimation of
multi-factor models on representative samples. While researchers had to restrict
themselves either to the cross-section or the time-series estimation separately in
the eighties and mid-nineties, panel data techniques are now widely used. Using a
panel data framework leads to more efficient estimates of parameters and to more
powerful specification tests. Fourth, interesting framework extensions have been
elaborated. The joint modeling of the term structure together with the dynam-
ics of macroeconomic variables allows for numerous monetary policy applications
and insights in the working of the economy and the formation of expectations (see
Dewachter et al. (2002) and Hordahl et al. (2002)). Another promising exten-
sion is the modeling of a multi-country term structure by taking the exchange
rate dynamics into account, thereby allowing to study puzzling empirical interna-
tional phenomena such as the forward premium puzzle (see Brandt and Santa-Clara
(2002) and Dewachter and Maes (2001)).

Given that term structure models are gaining in importance for the above
reasons, we review the vast literature in an intuitive way. Basically, there are two
main approaches to set up a no-arbitrage term structure model (equivalently, to
value ZCBs across the maturity spectrum): martingale pricing and risk neutral
pricing. Whatever the approach assumed, in the end the underlying assumption
is absence of arbitrage opportunities, which can be understood as a generalization
of the law of one price. Absence of arbitrage can be shown to be equivalent to the
existence of a pricing kernel. The pricing kernel dynamics over the life of the ZCB
determine its price. It turns out that the short term interest rate determines the
drift, while the market price of risk determines the volatility of the pricing kernel
dynamics. Alternatively, absence of arbitrage can also be shown to be equivalent
to the existence of a risk neutral probability measure. Under the risk neutral
probability measure, the ZCB price is the conditional expectation of the face value
discounted back in time with the risk free rate. The twist from the true to the
risk neutral measure probability measure is accomplished by the Radon-Nikodym
derivative which is fully characterized by the market price of risk. In sum, in
both arbitrage free approaches only two ingredients are needed to set up a term
structure model: the short rate and a market price of risk (vector) that summarizes
the relationship between return and reward in the bond market.

By assuming that the state of the economy is well-described by factors that
follow diffusion dynamics, factor-dependent expressions for prices and yields can
be derived. More than two decades of research has resulted in a flow of seem-
ingly widely-differing models. However, most extant models are recently shown to
belong to the class of the so-called affine term structure models. The main advan-
tage of this class of models is its tractability, translating in simple analytical or
ordinary differential equation solution methods. In contrast, non-affine term struc-
ture models require more complex and time-consuming simulation-based or partial
differential equation solution methods. We discuss the fundamental trade-off be-
tween empirical flexibility and theoretical rigor that applies to all models within
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the affine class of term structure models. It turns out that tractability is paid for
with restrictive assumptions. We briefly discuss the non-affine models that try to
confront these weaknesses. Recently, the class of quadratic term structure models
has been proposed and seems to outperform the affine class in terms of matching
the economic moments of the yield curve. However, given the lack of uniform
data samples and the widely differing estimation methods, much robustness work
remains to be done.
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Appendix: Linking the Term Structure of Interest
Rates to Output and Inflation Dynamics

We will briefly give the intuition of how macroeconomic variables can be linked to
ZCB price dynamics. We use a simple discrete-time setup, based upon Ang and
Piazzesi (2001). There are basically three steps to set up such a joint model. The
first step consists of specifying separate models for the macro-variables and for the
bond prices (yields). For simplicity, assume Gaussian vector autoregression (VAR)
dynamics for the output gap g;, inflation rate m;, and the short-term interest rate
1y

Gt

| =X =p+ X1 + Dey. (63)

it
Given the large liquidity of the bond markets and the large investment banks
that stand ready to exploit any arbitrage opportunity that arises, it is reasonable
to impose absence of arbitrage opportunities amongst the bond prices (yields)
of different maturities. Simply including the yields into the above VAR system
would result in two disadvantages. First, in that case we can only say something
about the yields that are included in the VAR. Implications for yields that are not
included in the VAR and for non-marketable yields cannot be drawn. Second, and
more important, we cannot impose the absence of arbitrage amongst the different
yields. The discrete-time equivalent of our no-arbitrage equation (21) is:

PP = Ef [mea P (64)

where n denotes the time to maturity, P,,, = 1, and m;; stands for the stochastic
discount factor (SDF, the ratio of the respective pricing kernels). We can solve
equation (64) forward to find that every term structure model is equivalent to a
model for the SDF dynamics (see Campbell, et al. (1997)):

P = El [myamis.mis), (65)

In miy1 = —’it+1 — A/€t+1, (66)

where A is assumed to be the market price of risk. Equation (66) can be compared
to its continuous-time equivalent in equation (23).

The second step consists of establishing the link between the macro-model and

the term structure model. First, it follows from the above set-up that the macro-

factors enter into the drift of the pricing kernel. The third row of the VAR system
in (63) can be interpreted as a Taylor rule equation

it+1 = U3 + @[3’4}Xt. (67)

Substituting this discrete-time approximation of the short rate into (66) gives us
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In miy1 = — Mg — CI)[gr]Xt — A/€t+1. (68)

Second, for reasons of tractability, we restrict attention to ATSMs

P =exp(—A, — B, Xy). (69)

It follows that prices are conditionally lognormal.
Finally, step three basically solves for the yields as a function of the macro-
factors, using the fact that m; 1 P7" is conditionally lognormally distributed

P = In(E [mPo']) (70)
= F, {111 M1+ 1n ng[ll] + %Vart {hl M1+ In Rf[ll] (71)
= E/[lnmy]+ E; [ln Pt’_fll}

1 1 1
+§Vart Inmyq] + EVart [ln Pt’jr_ll} + 2§Covt [ln Miy1, 10 Pt’_fll} (72)
Compute each of the five terms on the right hand side

P = (—py— P X0) + (—An 1 — By (14 9X0)) + (%A’A)

1
+ (53;122'13”1) + (B, 1 Z'A). (73)

Re-express the left hand side and group terms at the right hand side

1 1
—An — B;Xt = (—,u3 + §AIA — An,1 — B;zfl (,u — EIA) + EBglEE'BnQ
—(®p,) + B, @) X, (74)

Equalizing coefficients at left and right hand sides results in the following recursive
system

Ap= Ay 1 43— NN+ B, (u—X'A) - 1B, ¥'B, ,
(75)
Bl = &5+ B, ,®,

which is the discrete-time equivalent of the ODE system in equation (59). The
initial condition for the recursive system is found by rewriting i; in two different

ways
A By
Tl + TlXt = ug + @[37.]Xt,1.
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Hence
Ay = pig
(76)

In sum, Ang and Piazzesi (2001) have found a relationship between the macro-
variables and the yields

n In P
Yy = - nt (77)
A, B
= —+—X, (78)
n n

where the coefficients A,, and B,, incorporate the no-arbitrage restrictions (unlike
with ordinary least squares regressions, say). The discrete-time model fit can be
evaluated easily. First, estimate the VAR system and get estimates for pu, ®, and
Y. Then, compute the loadings A, By, As, Ba, ete. recursively (assume A zero for
convenience). Finally, compute model-implied yields y; = A,,/n + (B, /n) X;, and
compare them to the actually observed yields to gauge the fit. Dewachter et al.
(2001a) find that this simple discrete-time Vasicek (1977) model shows a good fit
at the short end, but a bad fit at the long end of the yield curve. Their conclusion
is that observed macroeconomic variables fail to explain the yield curve at the long
end. They show that the inclusion of unobserved variables can accommodate the
yield curve behavior both at the short and long end of the yield curve, where the
unobserved variables can be given a precise economic interpretation.
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