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Abstract
Using firm-level data for Belgium, we study the validity of Hicks neutrality in

several sectors that cover the spectrum of knowledge intensity. We find that Hicks
neutrality is clearly not supported by the data in different sectors. The results are not
sensitive to altering the specification of the technology by including firm age and R&D
into the analysis. We also reject Hicks neutrality for a balanced sample, pointing to
‘within-firm’ factor-biased technical change and we also find factor-biased technical
change in the pre-crisis era, indicating that unobserved heterogeneity in demand
does not drive the results. Overall, our results point towards low-skilled labour-
saving and materials-using technical change. So far, this has received little attention
and may be linked to offshoring and global value chain networks. Finally, we show
that nonparametric estimates of TFP change that allow for factor biases support the
evidence of the recent slowdown in TFP growth in many manufacturing sectors in
Belgium. Estimations of TFP and technical change are shown to be sensitive to the
estimation method and the specification of the factor bias of technical change.
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1 Introduction

Despite decades of research, total factor productivity (TFP) - defined as the part of out-

put that is not explained by measured inputs- remains what Abramovitz (1956) labeled as

some sort of measure of our ignorance. Hulten (2001, 2009) enumerates problems that may

result in TFP being a biased indicator of disembodied technical efficiency: for example,

measurement errors; omitted variables; aggregation bias and model misspecification. Re-

cent contributions tackle some of these problems, such as endogeneity and within-industry

heterogeneity. A potential bias that appears to receive less attention is the fact that most

calculations of TFP growth explicitly assume technological change to be Hicks-neutral.

Although Solow (1957) argued that technological progress over the period 1909-1949 was

neutral, others have provided historical evidence that technological change has mostly not

been factor-neutral. The data for the US, used by Sato (1970), indicate that technological

progress was labour-saving over the period 1909-1960. Binswanger (1974) concluded that

technological change was neutral before 1944 but was labour-saving (machinery-using)

between 1944 and 1968. According to Abramovitz (1993), technology favoured physical

capital in the 19th century. In the 20th century the bias shifted towards intangible capital

(contribution of education and R&D). Acemoglu (2011) points out that in the late 18th and

early 19th century technology favoured low-skilled workers whereas more recently evidence

seems to bear out a bias in favour of high-skilled workers. Berman, Bound and Machin

(1998) provide evidence of skill-biased technological change in most OECD countries for the

1970s and 1980s. Bessen (2008) concludes that most empirical studies reject the assumption

of Hicks neutrality. Violante (2008) argues that to make sense of the rising skill premiums

witnessed in most OECD countries- given the dramatic increase in the relative supply of

college graduates- one must introduce factor-biased technological change.

Skill-biased technological change (SBTC) is often put forward as the major explanation

for the weakened labour market position of the low-skilled (Bound and Johnson, 1992;

Berman, Bound and Griliches, 1994; Autor, Katz and Krueger, 1998; Sanders and ter
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Weel, 2000; Levy and Murnane, 2005; Autor, Katz and Kearney, 2008; Goldin and Katz;

2008; Brynjolfsson and McAfee, 2011) whereas the structural increase in the income share

of capital, witnessed in many OECD countries is by some explained by capital-augmenting

technological change (see, for example, Bentolila and Saint-Paul, 2003; Arpaia et al. 2009

and chapter 3 in OECD Employment Outlook 2012). In most studies, high-skilled labour is

explicitly assumed or at least implied to be a complement to capital. However, a task-based

view of the contribution of ICT (for example, Autor, Levy and Munrane, 2003) provides a

less straightforward link between capital and skills.

The literature and empirical evidence on factor-biased technological change seems at odds

with the explicit assumption of factor-neutral technological change of most estimations of

TFP growth. There are relatively few studies that consider the impact of potential non-

neutral technological progress on TFP estimates. Felipe and McCombie (2001), in their

assessment of the stellar performance of East Asian NICs, conclude that accounting for

factor-biased technological change tends to increase TFP estimates but only marginally.

On the other hand, Murgai (1999) finds that accounting for factor-biased technological

change, substantially raises estimates of TFP growth for the Punjab region in India and

Bailey, Irz and Balcombe (2004) show that ignoring the bias in technological progress for

UK agriculture over the period 1953-2000, results in a strong underestimation of TFP

growth. Dupuy (2006) argues that investment in ICT after 1973 succeeded in maintain-

ing the growth in the knowledge stock at its previous rate but the bias in technological

progress explains the productivity slowdown of the 1970s and 1980s. Bessen (2008) repli-

cates a number of previous studies. He concludes that ignoring the factor bias tends to

underestimate the contribution of technological progress. For example, the conclusion by

Kim and Lau (1994) and Young (1995) that economic growth of East Asian NICs was due

to capital accumulation rather than due to (disembodied) technological progress results

from ignoring the factor bias. In contrast with Felipe and McCombie (2001), his esti-

mates suggest a far more substantial role for factor-augmenting technical change in East

Asia. Antonelli and Quatraro (2010), using country-level data for 12 OECD countries over
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the period 1970-2003, provide indications of factor-biased technological change. A bias

that favours the utilization of the relatively scarce production factors in a given country

reduces the TFP growth of that country. Antonelli and Quatraro (2010) argue that ignor-

ing the knowledge bias in recent technological progress may explain part of the perceived

productivity slowdown in most OECD countries. Zhang (2014) points out that as recent

technological change in China appears to be capital-saving, an assessment based on the

assumption of Hicks neutrality will provide biased conclusions as to the contribution of

technological change to economic growth in China.

This paper contributes to the literature on factor-biased technical change, first, by pro-

viding a general overview of factor biases in 14 manufacturing sectors in Belgium. While

the existing literature on factor-biased technical change focuses on specific sectors, we test

whether or not factor-biased technical change is pervasive in manufacturing. Second, be-

sides focusing on skill and capital biases, we test for a materials bias, which received little

attention so far in the literature and is expected to gain importance because of the increas-

ing prevalence of offshoring and involvement in global value chains. Third, we provide

insight into the robustness of factor biases when allowing for within-industry heterogene-

ity in technology by including firm-level R&D and firm age in the analysis. Fourth, we

address factor biases in a fully nonparametric framework that is constrained to be consis-

tent with micro-economic theory, implying that we make no a priori assumptions on the

functional form of the production function (except monotonicity). Last, we suggest a fully

nonparametric TFP change framework that does not impose Hicks neutrality.

The remainder of this paper is structured as follows. In section 2 we discuss the literature on

TFP growth with factor-biased technical change. In subsection 2.1 we briefly discuss how

ignoring the potential factor bias in technological progress affects estimates of total factor

productivity growth. Subsection 2.2 provides an overview of the ways in the literature

a factor bias is estimated or accounted for. In section 3, we discuss the nonparametric

methodology to estimate technical change, factor-biased technical change and TFP growth.

In section 4, we describe the used data on manufacturing in Belgium. In section 5 we discuss
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the results and section 6 concludes.

2 Total factor productivity growth with factor-biased

technological change

2.1 Impact of factor-biased technological change on total factor

productivity growth

The question whether technological change is neutral or biased is raised in the literature

with respect to three main issues: the validity as such of the assumption of (Hicks-) neu-

tral technical change1, widely made in theoretical as well as applied research; the potential

bias in the estimation of TFP when erroneously (Hicks-) neutral technical change is im-

posed and, finally, the impact of technical change on the factor shares (and hence income

distribution).

The first issue is mainly an empirical question, for which we refer to the next section. How

the second issue is formulated, depends on the framework that is used and the specific

assumptions that are made. However, it can be easily illustrated in a standard neo-

classical linear homogeneous production framework Y = F (K,L,A(t)) in which output Y

is a function of two inputs (for example capital K and labour L). A(t) reflects the shift in

output for a given level of inputs, generally considered to reflect technological change2. The

1Neutral technological change is defined either as Hicks-, Solow- or Harrod-neutral. The usual definition

is the first, in terms of which neutrality is defined as a time-constant marginal rate of substitution between

the input factors. Harrod neutrality implies that the capital-output ratio remains constant at a given

interest rate. Bessen (2008) points out that the assumption of Harrod-neutrality, necessary to assure a

steady state solution in neoclassical growth theory (see Barro and Sala-i-Martin, 2004), is not supported

by empirical evidence.
2Solow (1956) labelled At as an increasing scale factor and Solow (1957) stated that he used ”technical

change” as a shorthand expression for any kind of shift in the production function.
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Solow residual is then defined in intensity terms3 (y = Y
L

; k = K
L

) as RSolow = ŷ−sk̂∗ (with

s denoting the output share of capital and k∗ the profit-maximizing capital-labour ratio),

i.e. the change in labour productivity that cannot be attributed to capital-deepening.

Bessen (2008) shows that the Solow residual is only an accurate measure of technical

change if the capital-labour ratio is independent from A, i.e. when technological change is

Hicks-neutral. If the bias of technical change is defined as B ≡
∂2F
∂K∂A
∂F
∂K

−
∂2F
∂L∂A
∂F
∂L

≡ FKA
FK
−FLA
FL

,

then Hicks-neutrality corresponds to B = 0. In general, k∗ depends on the relative factor

reward (w ≡ wL
wK

) as well as on A and labour productivity growth is therefore equal to

ŷ = sσ (ŵ +B) +RSolow, where σ = FKFL
FFKL

denotes the elasticity of substitution. It follows

immediately that the Solow residual only captures the total effect of technical change

(R = ŷ − sσŵ) conditional upon Hicks neutrality.

As regards the third issue, Ferguson (1968) showed in the same framework that the change

in the income shares (s, 1− s) are a function of σ, k∗ and B :

ŝ = (1− s)
[
B + (1− 1

σ
)k̂∗
]

(1)

From (1) it is clear that Hicks capital-biased technical change (B > 0) does not neces-

sarily imply a negative (positive) impact on the income share of labour (capital), as this

also depends on the elasticity of substitution and the change in the capital-labour ratio.

Ferguson points out that this may offer an alternative explanation to the Cobb-Douglas

assumptions (Hicks-neutral technological change and σ = 1) for the fact that factor income

shares appear to be relatively constant in the long run, as pointed out by Acemoglu (2003).

Arpaia et al. (2009) and OECD (2012) report that the share of capital in national income

increased substantially in recent decades in most OECD countries. This could be due to

a strong capital bias in technological change or an elasticity of substitution larger than 1,

combined with capital-deepening, or both.

3Where, as usual, T̂FP =
∂TFP

∂t

TFP =
•

TFP
TFP
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2.2 How to measure the factor bias of technological change?

The estimation methodology of the bias in technical change is closely linked to that of

total factor productivity as such, in which following Diewert (1981) three main approaches

can be distinguished: the nonparametric index approach, the econometric and the non-

parametric linear programming approach. In the nonparametric index calculation of total

factor productivity, one tries to take account of the factor bias by correcting the input

factor shares that are used as weights of input factor growth. Total factor productivity

growth, taken as the Solow residual, is measured by the Tornqvist-Theil approximation

of the Divisia index of the difference between the growth of output and the factor share

weighted growth of the input factors. As indicated in the previous section, when biased,

technical change will be (partially) reflected by the change in factor shares and therefore

the Solow residual must be corrected. The difference between the corrected and the Solow

residual is then taken as an indicator of the factor bias. Bailey, Irz and Balcombe (2004)

propose to estimate constant technology factor shares, assuming a translog revenue and

cost function, from which output revenue and factor cost shares are derived. In these share

functions, the bias of technical change is specified as a random walk with drift process,

which is estimated and used to compute an adjusted TFP index. Felipe and McCombie

(2001) use a computational approach to recover the constant technology factor shares.

Bessen (2008) uses estimates of σ from the literature to estimate R (= ŷ − sσŵ).

The most common approach to measure factor bias of technological change is the econo-

metric estimation, mostly of a flexible production or cost function, in which the factor bias

of technical change is either taken into account by a time trend and interaction effects of

time and other regressors or by a general index of technical change, additively and mul-

tiplicatively with other regressors. Christensen, Jorgenson and Lau (1973) allowed for a

factor bias through the interaction of production factors with an index of technology. Using

the dual translog cost function, Binswanger (1974) measured the factor bias by consider-

ing interaction terms of factor prices with time. Stevenson (1980) introduced a third order

translog cost function in which second order coefficients can change over time. Although
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this substantially increases the number of coefficients to estimate, he argues that this model

is more realistic and permits to test for price-induced factor biases and the assumption that

large firms have a higher rate of technological progress than small firms. Estimating the

factor bias from a translog cost function is also used more recently, amongst others, by

Adams (1999), who allows for labour heterogeneity of the inputs and who considers R&D

as the factor bias determinant and Betts (1997), who models the factor bias of technical

change by a time trend.

As shown in Kumbhakar, Heshmati and Hjalmarsson (1999), TFP growth of cost-minimizing

firms in a setting of competitive input markets (without price information) can be decom-

posed in technical change ∂lnY
∂t

and a scale component:

T̂FP t =
∂lnY

∂t
+ (RTS − 1)

∑
j

εj
Ẋj

Xj

, εj =
∂lnY

∂lnXj

, (2)

where εj is the shadow price approximation of the cost share Sj of input Xj and factor

bias Bj =
∂Sj
∂t

=
∂εj
∂t

= ∂2lnY
∂lnXj∂t

, with j = 1, ...,m.

They consider a translog production function with both alternatives for technological

change4: technological change as a time trend t5 and technological change reflected by

a general index A(t) (proposed by Baltagi and Griffin, 1988)6. In the first alternative,

TFP growth can be calculated after estimation as (and similar for the general index):

T̂FP
TT1

t =

[
αt + αttt+

∑
j

αjtlnXj

]
+ (RTS − 1)

∑
j

εj
Ẋj

Xj

, (3)

The term in square brackets reflects technological change. TFP growth will only equal

technological change for constant returns to scale (elasticity of scale (RTS) = 1). A poten-

tial factor bias of technological change is reflected by αjt in the time trend model, which is

4Kumbhakar, Heshmati and Hjalmarsson (1999) consider a production function with variable as well

as quasi-fixed inputs. For ease of exposition only variable inputs are considered
5I.e. the production function specification lnY = α0 +

∑
j αj lnXj + αtt +

1
2

(∑
j

∑
k lnXj lnXk + αttt

2
)

+
∑
j αjtlnXjt.

6I.e. lnY = α0 +
∑
j αj lnXj +A(t) + 1

2

(∑
j

∑
k lnXj lnXk

)
+
∑
j αjtlnXjA(t).
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constant over time and across firms. In the general index model, the factor bias can change

over time (αjt[A(t) − A(t − 1)]). A potential scale bias is reflected by
∑

j αjt in the time

trend model and [A(t) − A(t − 1)]
∑

j αjt in the general index model. Kumbhakar, Hesh-

mati and Hjalmarsson (1999) propose further extensions, allowing for a more firm-specific

pattern of technological change and its factor bias. In their empirical work on plant-level

data of the Swedish cement industry over the period 1955-1979, the model that appears to

perform best is one in which the following term is added to the time trend specification,

as proposed by Stevenson (1980): 1
2
t
(∑

j

∑
k φjklnXjlnXk

)
.

For this specification the factor bias for production factor j is given by αjt +
∑

k φjklnXk

and the scale bias by
∑

j (αjt +
∑

k φjklnXk) . Oh, Heshmati and Lööf (2012), applying the

same alternative specifications as Kumbhakar, Heshmati and Hjalmarsson (1999) to data

on Swedish firms over the period 1992-2000 lend further support for the latter specification.

Although most studies use, directly or indirectly, a translog specification, this functional

form is known to have limitations (see for example, Berndt and Khaled, 1979; Berndt and

Wood, 1982; Diewert and Wales, 1987; Barnett, 1985; Barnett et al., 1985; Henderson and

Kumbhakar, 2006) and some studies have considered alternative specifications. Following

David and Van der Klundert (1965), Klump et al. (2007) assume a CES production func-

tion in which technological change is pure factor-augmenting, modelled as a factor-specific

constant growth rate function. Some of the most recent studies use a CES production

framework as well, but consider technical change as an unobserved component, as in Olley

and Pakes (1996) or Levinsohn and Petrin (2003), though now factor-specific. The factor-

augmenting components are recovered from the inverted input demand function. Dorazel-

ski and Jaumandreu (2012) assume that technical change consists of a Hicks-neutral and a

labour-augmenting (unobserved) component, both modelled as Markov processes of which

the expected terms are (unknown) functions of R&D expenditures. Assuming profit maxi-

mization, the demand functions for labour and materials are derived, which can be solved

for the Hicks-neutral and labour-augmenting productivity component. These solutions are

solely functions of observable variables and can be substituted in the expected productivity
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component, which is further taken as the complete set of third order polynomials of the

one-period lagged productivity component and R&D expenditures. From this, a system of

two semi-parametric equations is formulated, the estimation of which allows to obtain an

estimation of the labour-augmenting and Hicks-neutral productivity component.

Zhang (2014) also models productivity as an unobservable component of the production

function, though he adopts the assumption of pure factor-augmenting technical change

and uses a translog production framework. Again, the input demand functions of labour

and materials allow to solve for the unobserved productivity components, from which,

after substitution in the production function, the error term can be solved (i.e. the unob-

served productivity component can be separated), the moment conditions can be specified

to estimate the parameters of the production function consistently and the productivity

components recovered.

The estimation of the factor bias of technical change is also related to the literature on

the impact of technical change on relative factor demand, in particular the skill bias in

labour demand, of which the earlier contributions are reviewed in Sanders and ter Weel

(2000) and Chennells and Van Reenen (1999). Most empirical studies estimate the factor

bias of technological change indirectly by estimating cost share equations that can be

derived by applying Shephard’s lemma to a translog cost function. The cost shares are

regressed on proxy variables of technology, the coefficients of which are then considered

to provide evidence of a factor bias. Empirical studies that apply this approach tend to

indicate that investment in ICT and R&D activities shifts relative demand in favour of

high-skilled workers (for example, Berman, Bound and Griliches, 1994; Machin and Van

Reenen, 1998; Autor, Katz and Krueger, 1998; Adams, 1999; Abowd et al., 2007). The

regression of cost or employment shares on a number of technology and other variables

provides estimates of the impact of specific technological activities on the shift in relative

demand of production factors. However, as (1) shows, changes in factor shares can be due

to substitution between factors (e.g., due to changes in relative prices) as well as due to a

bias in technological change. These regressions therefore conflate the impact of the factor

10



bias with the impact of factor substitution.

Finally, Kumbhakar and Sun (2012) use a kernel-based semiparametric modelling of the

factor bias in technical change, in addition to a parametric translog production framework.

Either parametrically specified or semiparametrically, from the estimation of the input

distance function, obtained by normalizing the input demand function with a production

factor taken as numéraire, the three components of total factor productivity growth can be

identified, similar to the expression in (3): the bias in technical change, the scale component

and the allocative efficiency component7.

The use of a flexible methodology such as the translog and semiparametric models to assess

factor biases is however not without disadvantages. First, although flexible, the models

impose a functional form that can lead to a misspecification bias. An important second

drawback is that output elasticities, the basis of factor bias estimation, can be negative,

which violates the warranted monotonicity property (i.e. strong or free disposability) that

implies that more inputs cannot lead to less output and producing less output cannot lead

to more input use. Stated differently, monotonicity excludes congestion by imposing that

the marginal rates of substitution/transformation (between inputs and between inputs and

outputs) are non-negative. In this paper, we advocate the use of a fully nonparametric

methodology that is constrained to behave in line with micro-economic theory.

3 Methodology

To show how factor biases and TFP growth can be estimated fully nonparametrically, we

first define the empirical model, then discuss the local linear regression approach and last,

show how economic restrictions can be imposed.

7The last component does not appear in (3), which is derived under the assumption of cost minimization

and hence allocative efficiency.
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3.1 The production model

We start from a production model with log output lnY , m-dimensional log input lnX, time

t = t0, ..., tT (our proxy for technical variation) for a set of observations S = {1, ..., i, ..., n}.

u defines the variation (assumed exogenous) in observed firm performance that we cannot

capture by the model. In the dominant literature, the empirical model is specified imposing

Hicks neutrality as in (4). Hicks neutrality implies that the effect of time and inputs lnX

are additive. Formally, ∀lnXj : ∂2lnY/∂lnXj∂t = 0, with j = 1, ..,m.

lnYi = g(lnXi) + A(t) + ui, with i=1,...,n. (4)

A general model that relaxes Hicks neutrality by allowing for factor-biased technical change

is given in (5). There is a factor bias in technical change if the output elasticity of an input

j, the shadow price version of the cost share of input j, changes over time. Formally,

following Binswanger (1974) a factor bias is defined as Bj =
∂Sj
∂t

=
∂εj
∂t

= ∂2g
∂lnXj∂t

6= 0, for

some j in 1, ...,m.

lnYi = g(lnXi, t) + ui, with i=1,...,n. (5)

To allow for heterogeneity in technology across groups of firms, we add categorical variables

to the production model that interact with the time trend t and log inputs lnX. For ease

of notation, we group the continuous values in Xc = [lnX, t] and define the explanatory

variables by X̃ = [lnX, t,Xu] = [Xc, Xu], with Xu a vector of unordered discrete values.

X̃i defines the value of X̃ for observation i, with i = 1, ..., n and the production model is

given by:

lnYi = g(X̃i) + ui, with i=1,...,n. (6)
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3.2 Local linear regression

In a nonparametric (generalized) kernel regression, the conditional expected outputE[lnYi|X̃ =

X̃i] is not parametrized, but estimated by means of a localized regression. Stated differ-

ently, the main idea is to consider ĝ(X̃i) = E[lnYi|X̃ close to X̃i] as an approximation of

E[lnYi|X̃ = X̃i]. Nonparametric approaches do not impose ‘a priori’ a functional relation-

ship between the output and explanatory variables but ‘let the data speak ’ by localizing

the production model8.

In a local linear regression, a linear model is imposed only locally for the set of observations

that have similar levels of input. Kernel weight functions are used to give more weight to

observations with similar characteristics and bandwidths impose the window of localization.

For large bandwidths the relationship will tend towards a straight line (surface), implying

that a model with a linear relationship between (log) inputs and (log) output is a special

case of nonparametric local linear regression. The parametric least squares estimator can

thus be seen as a special case of the local-linear estimator (Li and Racine, 2007, p. 83).

The regression is localized when the bandwidth sizes are smaller, implying that the model

allows for non-linearities and that the fitted relationship becomes more wiggly. Literature

shows that the choice of the weighting function is far less important than the choice of the

window of localization - which we discuss below.

In equations (7) and (8), we define kernel weights (lc, lu) with bandwidths (λc, λu). In

particular, we specify a Gaussian kernel function lc to weight the continuous variable Xc
k

(see (7)). An Aitchison and Aitken (1976) kernel lu is specified to weight discrete unordered

variable Xu
l with cl categories and λul ∈ [0, (cl − 1)/cl] (see (8)).

lc
(
Xc
ik −Xc

k

λck

)
=

1√
2π
e
− 1

2

(
Xcik−X

c
k

λc
k

)2

(7)

8See Li and Racine (2007) for an extensive overview of the used kernel regression approach.
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lu(Xu
il, X

u
l , λ

u
l ) =

1− λul if Xu
il = Xu

l ,

λul /(cl − 1) otherwise

(8)

We use product kernels to allow for multivariate regression. The product kernel of Xc is

Wλc(X
c
i , X

c) =
∏q

k=1(λck)
−1lc((Xc

ik − Xc
k)/λ

c
k). For Xu, the product kernel is defined as

Lλu(Xu
i , X

u) =
∏r

l=1 l
u(Xu

il, X
u
l , λ

u
l ). To include both continuous and categorical variables

together, we specify a Racine and Li (2004) generalized kernel function as Kγ(X̃i, X̃) =

Wλc(X
c
i , X

c)Lλu(Xu
i , X

u), with γ = (λc, λu).

The local linear kernel regression is the localized first order Taylor expansion of the pro-

duction model.9 The model is solved by the following minimization problem:

min
{α0,α1}

n∑
i=1

(lnYi − α0 − (Xc
i −Xc)α1)2Kγ(X̃i, x̃). (9)

As the model is localized by kernel weighting, partial derivatives ∂g(·)
∂Xc

q
are also local and

specific for each level of X̃.

Choosing which observations have similar input levels by selecting an appropriate multi-

variate bandwidth γ is of crucial importance. We apply the least-squares cross-validation

approach as defined in (10), a data-driven approach that minimizes the asymptotic inte-

grated mean squared error (AIMSE).10

CV (γ) =
1

n

n∑
i=1

(lnYi − ĝ−i(X̃i))
2w(X̃i) (10)

where ĝ−i is the leave-one-out local-linear kernel estimator of E(lnYi|X̃i). w(·) ∈ [0, 1] is

a weight function that serves to avoid difficulties caused by dividing by 0 or by the slower

convergence rate arising when X̃i lies near the boundary of the support of X̃. Simulation

results of Li and Racine (2004) confirm that cross-validated local-linear regressions indeed

have much larger bandwidths as optimum if the true relationship is linear.

9We opt for the local-linear regression as it has better boundary properties than the local-constant

regression (Hall et al., 2007) and nests least squares as a special case.
10We opt for this approach over the AIC cross-validation approach since the least-squares cross-validation

approach is less computationally cumbersome and more frequently applied in the literature.
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3.3 Nonparametric regression-based TFP estimation

Analogously to TFP estimation in Kumbhakar et al. (1999), we can include nonparametric

estimates of technical change and output elasticities into (2) to obtain nonparametric

regression-based TFP estimates:

T̂FP
NP

t =
∂g(·)
∂t

+ (RTS − 1)
∑
j

εj
Ẋj

Xj

, εj =
∂g(·)
∂lnXj

. (11)

The nonparametric TFP growth estimate T̂FP
NP

t has as main advantage that no para-

metric structure is imposed on the functional relationship between inputs and output.

3.4 Imposing economic restrictions

Economic theory rarely dictates a specific functional form. Instead, it denotes which

variables are possibly related and stipulates properties of the relationship (Yatchew, 1998).

Deviating from (log-)linearity such as in the parametric translog model or the used kernel

regression framework comes with the cost that the flexible fit may violate properties that are

stipulated by economic theory (i.e., monotonicity or convexity of the production possibility

set).

For our purpose of assessing factor biases in technical change, we impose as little assump-

tions as needed. As discussed, a property that is warranted is monotonicity (also referred

to as strong or free disposability), implying non-negative output elasticities of all inputs j,

with j = 1, ...,m.

As imposing a wrong production structure can lead to biased inference, we allow for non-

constant returns to scale and non-convexity of the production possibility set11.

While different approaches exist to constrain a nonparametric regression (surveyed in

Parmeter et al. (2014)), a constrained weighted bootstrapping procedure as proposed by

11Imposing convexity on the production possibility set would imply that we exclude among others the

possibility that a production function goes from increasing returns to scale (e.g. caused by indivisibility

of inputs) to decreasing returns to scale (e.g. caused by coordination costs).
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Hall and Huang (2001) is the most general as it can also be applied to parametric least

squares regressions as shown in Parmeter et al. (2014). We refer to Parmeter et al. (2014)

for a technical overview of the procedure and only provide here a general discussion of the

proposed methodology to constrain (local) linear estimators.

The starting point is that the estimate gj(X̃) of a linear estimator, with j = 0 representing

the fit and with j = 1, ...,m representing the first order derivative with respect to lnXj,

representing log input or time, can be formulated as a weighted sum of output, with weights

Aj,i(X̃):

ĝj(x) =
n∑
i=1

Aj,i(X̃)lnYi. (12)

In the case of a local linear regression, the weight A0,i(X̃) is defined in (13) and A1,i(X̃) is

the first order derivative of A0,i(X̃) with respect to input lnX1 (A1,i(X̃) =
∂A0,i(X̃)

∂lnX1
).

A0,i(X̃) =

 n∑
i=1

Kγ(X̃i, X̃)

 1 (Xc
i −Xc)

(Xc
i −Xc) (Xc

i −Xc)(Xc
i −Xc)′

−1Kγ(X̃i, X̃)

 1

(Xc
i −Xc)

 .

(13)

To impose monotonicity, which implies constraining gj(X̃), with j = 1, ...,m, to be non-

negative, we first introduce unconstrained weights pu = n−1 by multiplying (12) with n−1

and n to obtain (14) and choose weights p that replace pu such that the non-negativity

constraint and the constraint that
∑n

i=1 pi = 1 are satisfied. The optimal p that satisfies

the constraints is estimated by minimizing the L2 metric function D(p) = (pu−p)′(pu−p),

subject to the imposed constraints in a quadratic programming procedure. This gives

ĝj(X̃|p), defined in (15), which is the monotonized estimate of gj(X̃)12

ĝj(X̃) = n−1

n∑
i=1

Aj,i(X̃)× n× lnYi (14)

ĝj(X̃|p) =
n∑
i=1

Aj,i(X̃)pi × n× lnYi (15)

12We use the software R for the estimation of a constrained local linear regression. The unconstrained

local linear regression is estimated with the package np.
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4 Data

Our dataset is based on downloads for firms in 14 selected manufacturing industries (see

Table 1) in Belgium from November issues of the BELFIRST database provided by Bureau

Van Dijk. It is a database of annual accounts and (social) balance sheets. The database fur-

ther allows to obtain further firm characteristics such as a firms primary industry, location,

and date of incorporation.

Table 1: Manufacturing sectors included into the analysis

Nace Description

10 Manufacture of food products

13 Manufacture of textiles

16 Manufacture of wood and of products of wood and cork, except furniture;

manufacture of articles of straw and plaiting materials

17 Manufacture of paper and paper products

18 Printing and reproduction of recorded media

20 Manufacture of chemicals and chemical products

22 Manufacture of rubber and plastic products

23 Manufacture of other non-metallic mineral products

24 Manufacture of basic metals

25 Manufacture of fabricated metal products, except machinery and equipment

26 Manufacture of computer, electronic and optical products

27 Manufacture of electrical equipment

28 Manufacture of machinery and equipment not elsewhere classified

31 Manufacture of furniture

Because a specific issue or version of the database only contains information for the last

ten years, we consulted different November issues of the database (new DVDs are released

on a monthly basis). We consulted the DVDs of 2012, 2009, 2007, 2005, and 2002. The

use of multiple issues allows to generate a dataset with better information on entry and

exit as firms that exit the market are dropped rapidly from the database. Furthermore it

allows to increase the time span of the data to 1995-2011.
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Table 2 assesses the representativeness of our data. The first column lists the average

number of firms in the different industries (averaged over years) ranging from a minimum

of 382 in industry 24 (Manufacture of basic metals) to 3706 in industry 25 (Manufacture

of fabricated metal products, except machinery and equipment). The following columns

compare our data with data from the Structural Business Statistics database from Eurostat

that refer to the population of firms (although these data are retrieved from a survey with

incomplete coverage in Belgium, see CompNet Task Force (2014)). The comparison is

based on the period 2008-2011 due to the availability of data at Eurostat. Our dataset

covers on average, over industries, about 43 percent of firms. If we exclude firms with zero

employees from the total SBS number (which is not available at the two-digit level) we

cover on average 75 percent of firms. In terms of the coverage of the number of employees

and value added, our dataset represents a little more than 70 percent of the employment

and value added across industries on average. If we restrict attention to firms that report

all the data that are typically used in estimating TFP (a.o. materials) we are left with 17

percent of the firms listed in the Structural Business database.
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Table 2: Representativeness of the dataset

avg. # firms # firms as # firms zero # employees # firms value added

in dataset share of SBS # empl excl. ’TFP’ vars.

10 3155 0.30 0.46 (10-12) 0.60 0.09 0.68

13 861 0.39 0.69 (13-14) 0.68 0.14 0.71

16 959 0.30 0.71 0.86 0.08 0.91

17 269 0.66 0.74 (17-18) 0.85 0.31 0.83

18 2128 0.22 0.74 (17-18) 0.90 0.06 0.90

20 601 0.57 0.95 (20-21) 0.65 0.34 0.73

22 607 0.49 0.76 0.69 0.22 0.77

23 1116 0.44 0.76 0.68 0.17 0.67

24 382 0.63 0.71 (24-25) 0.39 0.32 0.33

25 3706 0.34 0.71 (24-25) 0.82 0.09 0.84

26 529 0.43 0.99 (26-27) 0.53 0.18 0.55

27 482 0.46 0.99 (26-27) 0.85 0.19 0.92

28 1310 0.49 0.93 0.76 0.18 0.78

31 981 0.26 0.60 (31-32) 0.73 0.07 0.78

average 1220 0.43 0.76 0.71 0.17 0.74

year

2008 0.42 0.70 0.17 0.72

2009 0.42 0.73 0.17 0.74

2010 0.44 0.71 0.17 0.75

2011 0.43 0.71 0.17 0.76

From the social balance sheet we are able to recover the share of four categories in total

employment at the firm level: management, employees (white collar), worker (blue collar),

and other. Table 3 shows the evolution of the average share over the time span of our

dataset. Because not all firms fill out the social balance sheet, the first column lists the

number of firms on which the averages are based. On average workers account for a

little more than two thirds of employment in a firm and employees for about 31 percent.

Managers and others together account for the remaining 1.5 percent. The evolution is
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noteworthy as well. The average share of employees increases from 28 percent in 1997

to 34.8 percent in 2010, whereas the average share of workers decreases from 70 to 63.8

percent over the same period. Figures available upon request show the pervasiveness of

this evolution across the entire distribution. The increase in the share of employees and

a decrease of the share of workers can be seen at the 10th percentile, the median as well

as the 90th percentile. Table 3 reports the average shares in the different industries as

well as the change in percentage points between 1997 and 2010. Industries 27 (electrical

equipment) and 31 (furniture) record the biggest changes over the period. The electrical

equipment industry shows a rise of the share of employees of 36.0 to 51.6 percent, whereas

the share of workers decreases from 61.1 to 46.5 percent.

For the analysis in this paper, we define ‘low-skilled labour’ as the full-time equivalent

(FTE) number of workers and ‘other’ and define ‘high-skilled labour’ as the FTE number

of employees and management. Obviously, this classification is imperfect, but it is the

most reliable at hand. The classification is more suited to show factor biases for low-skilled

labour than for the high-skilled employees, because we cannot disentangle medium-skilled

from high-skilled labour. Results on (the absence of) high-skill using technical change need

therefore to be interpreted with care.
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Table 3: Skill heterogeneity

# firms share of

management employees workers other

1997 3,027 1.2 28.0 70.0 0.8

1998 3,272 1.1 28.2 70.0 0.7

1999 3,374 1.1 28.4 69.8 0.8

2000 3,376 0.9 28.7 69.5 0.8

2001 3,422 1.0 29.4 68.8 0.7

2002 3,261 0.8 30.0 68.4 0.8

2003 3,163 0.7 30.4 68.2 0.7

2004 3,055 0.7 30.6 68.1 0.7

2005 2,837 0.8 31.5 67.0 0.7

2006 2,820 0.7 32.7 65.2 1.3

2007 2,793 0.8 33.2 64.8 1.2

2008 2,759 0.7 34.2 64.3 0.8

2009 2,644 0.7 34.6 64.1 0.6

2010 2,605 0.8 34.8 63.8 0.6

2011 1,153 0.9 41.0 57.5 0.6

average 1997-2010 0.9 31.1 67.3 0.8

change 1997-2010 -0.4 6.8 -6.1 -0.2

As we want to allow for heterogeneity in technology within sectors, we include information

on firm age and R&D into the analysis13. We define firms as ‘young ’ (‘old ’) if the firm age

is at most 10 years (at least 20 years) and ‘mature’ if the firm age is between 10 and 20

years.

Data on the R&D activities (expenditures and personnel) of Belgian companies, covering

the period 1996-2011, have been kindly provided by the Belgian Science Policy Office. The

data are from the biennial OECD business R&D survey, collected at the national level of

Member states, following the recommendations of the OECD Frascati Manual. The data

are provided at the level of the establishment (plant) where the R&D activities are carried

13See e.g. Van Biesebroeck (2003) for a parametric productivity model which allows for heterogeneity

in technology.
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out. As the other data are at the firm level, plant-level R&D data of firms with more than

one R&D establishment have to be aggregated. As it is unlikely that all establishment

where R&D activities actually take place are included in the survey, we test for influences

of including R&D into the analysis for a subsample of observations for which R&D data

is available. We define a firm to be R&D-intensive if the average over all years of R&D

intensity, measured by the number of FTE employees active in R&D divided by the full

work force (LR&D
FTE / LFTE), is among the highest 25% of the firms of the nace two-digit

sector.

We deflated turnover, materials and capital, using industry-wide deflators of EU-KLEMS14

and cleaned the data both on levels and on growth rates to prevent effects of extreme

outliers and extreme noise on the analysis.15 As the coverage of firms in 1995 and in 2011

is lower than in the other years, we focus on the period 1996-2010. Table 4 summarizes

the data available in the sample period. It shows that our data cover both small and large

firms and documents the loss of observations by including R&D into the analysis.

Table 4: Summary statistics

Obs Mean StDev Min. Q1 Med. Q3 Max.

Defl. turnover/10,000 36979 2479.30 6759.69 21.82 305.24 815.29 2034.55 230951.09

Low-skilled (in FTE) 36979 59.65 115.29 0.73 10.40 27.00 62.00 3672.83

High-skilled (in FTE) 36979 27.50 68.73 0.32 3.73 9.58 24.34 2033.97

Defl. Capital/10,000 36979 403.82 1283.76 0.44 41.31 120.79 328.20 37676.64

Defl. Materials/10,000 36979 1919.70 5776.54 5.22 188.81 558.88 1489.99 192137.11

Firm age 36979 24.97 18.08 0.00 12.00 20.00 34.00 121.00

LR&D
FTE / LFTE 10693 0.05 0.10 0.00 0.00 0.02 0.05 1

14Firm-specific prices are not available for the given dataset.
15Specifically, we limit the sample to observations with a labour use of minimum 5, strictly positive

levels for both low-skilled and high-skilled labour, a number of months in a book year between 6 and 24

months and deflated turnover, deflated materials and deflated capital larger than 1,000 euro. Further, we

removed the lowest and highest percentile of the included variables and dropped observations with growth

rates of included variables lower (higher) than 10 (-10).
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5 Results

5.1 Optimal level of localization

As discussed in the methodology section, bandwidths that are very high (and thus imply no

localization) indicate a linear relationship (in logs). Table 5 shows the estimated optimal

bandwidths from the least squares cross-validation routine. In all the sectors, it is optimal

to localize in the direction of workers, employees and capital. Table 5 thus shows that

allowing for non-linearity and interactions is warranted (as the mean squared error is lower)

in all the sectors. For materials, the optimal bandwidth is very large in sector 16 (wood

and products of wood and cork) and 23 (other non-metallic mineral products), implying

that the relationship between log materials and log turnover is estimated to be linear.

The time trend (our proxy for technical change) is estimated to be linear in sector 10

(food products), 13 (textiles) and 20 (chemicals and chemical products). Technical change

- discussed in section 5.2 - is thus estimated to be constant and Hicks-neutral in these

sectors.
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Table 5: Bandwidth size

sector Log low-skilled Log high-skilled Log capital Log materials Year

10 0.535 0.682 0.390 3.620 341080.227

13 0.350 1.539 0.402 0.914 368683.967

16 0.650 0.863 0.223 48529.523 3.430

17 0.462 0.375 0.614 0.592 1.379

18 0.570 0.298 0.356 0.811 13.701

20 0.530 0.403 0.331 0.338 48.143

22 1.226 0.405 0.308 2.065 4.527

23 0.346 0.526 0.414 484078.458 4.121

24 0.480 0.595 0.583 0.844 13.600

25 0.552 0.469 0.484 2.065 5.721

26 0.907 0.133 1.593 0.479 2.598

27 0.855 0.844 0.468 0.638 1.002

28 0.166 0.585 0.997 1.970 3.842

31 0.667 0.967 0.243 1.267 2.801

5.2 Factor-biased technical change

Table 6 shows that in addition to sector 10,13 and 20, we cannot reject Hicks neutrality in

sector 24 (basic metals) in the period 1996-2010. We omit sector 26 (computer, electronic

and optical products) from the interpretation, as the changes are too high to make eco-

nomic sense. Hence, eight sectors remain for which we reject Hicks neutrality for the full

sample: sector 17 (paper and paper products), 18 (printing and reproduction of recorded

media), 22 (rubber and plastic products), 23 (other non-metallic mineral products), 25

(fabricated metal products, except machinery and equipment), 27 (electrical equipment),

28 (machinery and equipment n.e.c.) and 31 (furniture).

For all eight sectors except sector 18, there are substantial factor biases, with output elas-

ticity change larger than 0.05, i.e. an output change, resulting from a percentage change

in an input, with more than 5 percentage points.
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Table 6 indicates that in all of these eight sectors, the marginal productivity of low-skilled

labour (i.e., workers) is diminishing over time. For five sectors (17, 18, 22, 23 and 28), this

decline in output elasticity is significant at the 5% level.

We only find a statistically significant bias in favour of high-skilled labour in sector 23. The

factor bias estimations provide little support for technical change that is both input-saving

in low-skilled labour and input-using in high-skilled labour. This may be due to the fact

that our proxy for skilled labour is too broad as it does not reflect differences between

medium-skilled and high-skilled labour, but could also indicate the more ambiguous im-

pact of technological change on high-skilled workers stressed in some task-based studies

(for example Autor et al. (2003)) .

In contrast, we find evidence for materials-using technical change in three sectors (18, 25

and 31) and capital-using technical change in two sectors (17 and 23). Overall, the non-

parametric factor biases show technical change is low-skilled labour-saving in a substantial

part of the manufacturing sector, and depending on the sector either materials-using,

capital-using or high-skilled labour-using.

To control for the effects of the 2008 crisis and post-2008 economic slowdown, we addition-

ally estimate factor biases for the period 1996-2007. Overall, the results are in line with

the 1996-2010 period. We find low-skilled labour-saving technical change to be significant

in four sectors and little support for high-skilled using technical change (only in sector 23).

In sector 18 and 25, we find a significant materials bias. There is mixed evidence of a

capital bias, as the output elasticity is significantly increasing in sector 22 but significantly

decreasing in sector 27 and 31.

The relative factor biases are in line with the 1996-2010 period as we find factor biases

against low-skilled labour and in favour of either high-skilled, materials or capital.
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Table 6: Factor-biased technical change: full sample

Nace ∆εLS ∆εHS ∆εM ∆εC

1996-2010

10 0 0 0 0

13 0* 0 0 0

16 -0.03 0.02 0.02 0.01

17 -0.12* -0.06 0 0.15*

18 -0.02* 0.01 0.01* 0

20 0 0 0 0

22 -0.05* 0.04 0.05 -0.03

23 -0.08* 0.08* -0.02 0.02*

24 0 0 0 0

25 -0.02 -0.01 0.05* 0

26 -0.07 -0.09 -0.81* 0.6

27 -0.04 -0.03 0.03 -0.04*

28 -0.15* 0 0.02 0

31 -0.05 -0.01 0.14* -0.02

1996-2007

10 0 0 0 0

13 0* 0 0 0

16 0 0.02 0.05 0

17 -0.03 -0.02 -0.02 0

18 -0.01* 0.01 0.01* 0

20 0 0 0 0

22 -0.03* 0.04 0.03 -0.02

23 -0.06* 0.07* -0.03 0.02*

24 0 0 0 0

25 -0.02 0 0.04* 0

26 -0.1 -0.08 -0.81* 0.9*

27 -0.05 -0.08 0.08 -0.04*

28 -0.1* -0.01 0.01 -0.01

31 0.01 -0.02 0.05 -0.03*

From Table 6, we cannot conclude that the production structure of existing firms is chang-

ing over time. The factor biases we find can be the result of between firm market changes

such as entry, exit and reallocation even without any changes in the production structure

within firms. To obtain insight whether the documented factor biases also occur within

firms, we test for factor biases for a balanced sub-sample of firms. For this, we focus on

the sectors with more than 1,000 observations in the balanced panel.
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Table 7: Factor-biased technical change: balanced sample

Nace ∆εLS ∆εHS ∆εM ∆εC

1996-2010

10 0 0.01 -0.02 0

20 -0.09* -0.12* 0.09* 0.01

22 0.01 -0.11 0.02 0.05*

23 -0.17* -0.03 0 -0.07

24 -0.1 0.03 0.05 -0.07

25 -0.09* -0.02 0.06 0

28 0.11 0.05 0.13 0

1996-2007

10 0 0.01 -0.02 0

20 -0.1* -0.12* 0.08* 0.02

22 0.02 -0.14* -0.01 0.05*

23 -0.15* -0.05 -0.03 -0.06

24 -0.01 -0.03 0.04 -0.06

25 -0.06* -0.02 0.04 0

28 0.1 0.06 0.14 -0.01

Table 7 documents the changes in output elasticities for seven sectors. While for the full

sample, there was no localization in the direction of time for sectors 10 and 20, there is

localization for all the considered sectors when focusing on a balanced sample16.

In sectors 20, 22, 23 and 25, we find indications for factor biases for the subgroup of

incumbents. Overall, balanced sample results confirm the decreasing output elasticity of

low-skilled labour. Sectors 20, 23 and 25 show factor biases against labour and in favour of

capital and materials, especially pronounced for low-skilled labour. The balanced sample

results do not support the finding of significantly increasing output elasticity of high-skilled

labour in sector 23, indicating between-firm market changes drive the skill-using technical

change in this sector.

Though most attention in the factor bias literature goes to skill biases or capital biases, we

find that the materials bias is substantial in several sectors and also occurs within the group

16Bandwidth sizes available upon request.
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of incumbents. We are not the first to document a materials bias (see e.g. Betts (1997) and

Stevenson (1980)), but, to our knowledge, the first to show that technical change that is

materials-using and low-skilled labour-saving is widespread in manufacturing. We expect

that this is related to offshoring and inclusion in global value chain networks. Mion et al.

(2010) and Hertveldt and Michel (2013) already relate demand of low-skilled and skill-

upgrading to offshoring in Belgium. We contribute by showing nonparametrically that

factor-biased technical change in favour of materials and against low-skilled labour may

explain the decreased income share of low-skilled workers.

5.3 Allowing for heterogeneity in technology

Tables 6 and 7 document the rejection of Hicks neutrality in a substantial number of the

manufacturing sectors considered. However, it is unlikely that all firms operate under the

same technology as the ‘average’ firm and we need to test the sensitivity of the factor

biases for altering the specification of the technology. Usual suspects to explain within-

industry changes in production technology are very large firms (usually exporters) and

young, innovative companies. By using the flexible nonparametric methodology, we control

for variation in production scale as the production model is only imposed locally and thus

allow for varying dynamics of factor biases between large and small firms.17 By including

information on firm age and R&D intensity, we can test whether we also find factor biases

if we control for heterogeneity in technology.

For this, we focus on sector 25 (fabricated metal products, except machinery and equip-

ment) as it is one of the largest manufacturing sectors in Belgium and it is a sector that

shows robust indications for factor-biased technical change in favour of materials and

against labour - especially low-skilled labour - in Tables 6 and 7. Bandwidth sizes and

the analysis for other sectors are available upon request. Results for sectors 23 and 28 are

17As the number of very large firms is limited in all sectors, we do not test for different factor biases

between firm of different size in this paper.
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in line with the studied sector 25.

As discussed in section 4, firms with average (LR&D
FTE / LFTE) among the highest 25% in their

sector are categorized firms with high R&D intensity. As we exclude observations that

were not included in the survey, the sample for sector 25 is reduced from 6209 observations

to 2691 and for the balanced sample from 1710 to 1005 observations. For firms with

high R&D intensity, we confirm in Table 8 the decline in output elasticity of low-skilled

labour. Estimates for the balanced sample that focus on R&D intensive firms show a very

pronounced increase of marginal productivity of materials. Indications for a capital bias

are not robust for including R&D. Table 9 shows factor biases in sector 25, controlling for

firm age, but no indications for a skill bias. However, for all firm-age categories, we find a

significant material and capital bias.

Overall, we can conclude that sector 25 shows a robust material bias. Additionally, we

find strong indications for a capital bias, which is however less robust for altering the

specification of the production technology. No indications are found for a skill-using bias.

In the Appendix, we discuss translog estimates of factor-biased technical change, which

provide similar results for sector 25. The material bias found in sector 25 is thus robust

for altering the specification of technology and not specific to the used nonparametric

methodology.18

18Additional analysis available upon request shows that results are robust for including investments in

the analysis. However, as investments were calculated by use of firm-level depreciation rates which are

known to be unstable, we do not provide the results in the paper.
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5.4 Implications for TFP analysis

As discussed in section 2.1, assuming erroneously Hicks neutrality may induce a bias in the

estimation of TFP growth and thereby also bias the assessment of the determinants of TFP

growth. In Figure 1 and in the Appendix (Figures 2 and 3) we compare estimations of TFP

change at the sectoral level for different assumptions as regards the neutrality of technical

change and the estimation method of TFP. First, we include the nonparametric TFP change

estimates as defined in (11). Second, we include semiparametric Hicks-neutral technical

change estimates by making use of a partially linear model of Gao et al. (forthcoming), with

time and time-squared included parametrically and additive to a nonparametric smooth

of the inputs. As output elasticities cannot be estimated in the routine used for the

semiparametric model, we focus on technical change and additionally give nonparametric

technical change estimates.19 Third, we include a Hicks-neutral parametric translog model,

the Kumbhakar et al. (1999) TT1 translog model, with TFP change defined in (3), and

the Stevenson (1980) TT3 translog model. Recall that the latter two models allow for

factor-biased technical change by interacting the time trend with input factors, but that

the TT3 model allows for additional polynomials.

Figure 1 shows the time pattern of TFP between 1996 and 2010 for the Nace sectors 22, 25

and 28 (three sectors for which we find indications that technical change is low-skill saving

and materials-using); in Figures 2 and 3 the evolution of TFP is shown for all Nace two-

digit sectors of manufacturing in this period. Overall, the estimations suggest rather slow

TFP growth (technical change) in the period considered. Yet, the choice of methodology

is important. The estimates from the parametric translog models differ considerably from

the nonparametric estimates. The nonparametric estimates are rather conservative and

do not show the sharp TFP falls (e.g. in the crisis period). The Hicks-neutral and TT1

translog model show very similar patterns of TFP growth. In contrast, the TT3 translog

19Given that the returns to scale are estimated in the nonparametric model to be close to constant

returns to scale (estimates available upon request), the difference between technical change and TFP

change is modest.
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model estimates can widely differ from the other models and are unstable. As regards the

nonparametric estimations of TFP or technical change, the influence of imposing Hicks

neutrality is modest. The effects of interactions between time and inputs are thus for a

large part compensated by higher/lower output elasticities of the inputs and time trend,

leading to a fit which is close to a production fit that allows for factor biases. However,

in other sectors where a bias was found (in particular Nace sectors 17, 18 and 27), the

difference in the technical change estimates with and without assuming Hicks neutrality,

seems more substantial. In general, the assumptions made about the neutrality of technical

progress, may affect the estimations results of TFP or technical change quite considerably.

Therefore, it seems warranted to test for factor neutrality of technical change prior to the

estimation of TFP growth, irrespective of which estimation procedure is considered.

32



1996 1998 2000 2002 2004 2006 2008 2010

92
94

96
98

10
0

10
2

Year

T
F

P

Nonparametric TFP
Semiparametric Hicks−Neutral TC
Nonparametric TC

(a) Nace 23

●

●

●

● ● ●

●
●

●
●

● ●
●

●

●

1996 1998 2000 2002 2004 2006 2008 2010

92
94

96
98

10
0

10
2

Year

T
F

P

●

●

● ●
● ●

●
●

●

●

●

●
●

●

●

●

●

TL Hicks−Neutral TFP
TL TT1 TFP
TL TT3 TFP

(b) Nace 23

1996 1998 2000 2002 2004 2006 2008 2010

10
0

12
0

14
0

16
0

Year

T
F

P

Nonparametric TFP
Semiparametric Hicks−Neutral TC
Nonparametric TC

(c) Nace 25

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

1996 1998 2000 2002 2004 2006 2008 2010

10
0

12
0

14
0

16
0

Year

T
F

P

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

TL Hicks−Neutral TFP
TL TT1 TFP
TL TT3 TFP

(d) Nace 25

1996 1998 2000 2002 2004 2006 2008 2010

10
0

10
5

11
0

11
5

12
0

12
5

Year

T
F

P

Nonparametric TFP
Semiparametric Hicks−Neutral TC
Nonparametric TC

(e) Nace 28

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

1996 1998 2000 2002 2004 2006 2008 2010

10
0

10
5

11
0

11
5

12
0

12
5

Year

T
F

P

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

TL Hicks−Neutral TFP
TL TT1 TFP
TL TT3 TFP

(f) Nace 28

Figure 1: TFP estimates at the Nace two-digit level
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6 Concluding remarks

In most estimations of TFP growth at the firm level, Hicks neutrality is explicitly assumed.

In this paper, we provide a test for factor biases in manufacturing sectors with distinct

characteristics without imposing a parametric specification of the production function, con-

straining estimates to be in line with micro-economic theory, and discuss the implications

of rejecting Hicks neutrality for TFP estimation. Additionally, we advocate a TFP change

estimation framework that does not impose Hicks neutrality or a priori assumptions on the

functional form of the production function.

For this purpose, we constructed a firm-level sample covering 1996-2010, based on the

BELFIRST database of Bureau Van Dijk and firm-level R&D data from the Federal Public

Planning Service Science Policy. A fully nonparametric framework is applied to test for

changes in relative marginal productivity of inputs over time, estimate technical change

and obtain firm-level estimates of TFP change without impose Hicks neutrality.

We tested for Hicks neutrality in 14 manufacturing sectors at the Nace two-digit level in

Belgium and can reject Hicks neutrality for a substantial number of these sectors. We show

that technical change that is low-skilled labour-saving and materials-using is widespread in

the manufacturing sectors. The materials bias received little attention in the factor-biased

technological change literature and is likely to be linked to offshoring and the inclusion of

firms in global value chain networks. As offshoring and global value chains gain importance,

we may expect the materials bias of technological change will persist in the future. Further,

the materials bias has consequences for the appropriateness of value added measures (which

implicitly assume a time-invariant marginal productivity of materials).

Factor-biased technical change at sector level does not necessarily imply changes of relative

marginal productivity of inputs within incumbent firms and can be a mere result of entry

or exit of firms with other production characteristics (for example, newer technologies).

By limiting the sample to a balanced sample of incumbents, we show the changes in the

relative marginal productivity of inputs also occur ‘within-firm’.
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It is unlikely that all firms operate under the same technology. To account for heterogeneity

in technology, we show that the findings are not sensitive for including firm age and R&D,

which are both linked to technological heterogeneity.

Further analysis is needed to understand the micro-dynamics of factor-biased technical

change. We find no indications that factor biases are specific for either low- or high-

technology firms or sectors. Export behaviour and the involvement and position of firms

in global value chains of firms are likely micro-drivers of factor biases.
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Appendix

Translog estimations of factor bias and TFP growth

Most TFP measures result from calculation (index) or parametric estimation. To verify the

robustness of the conclusions of the nonparametric approach and to assess the impact of

the assumption of Hicks neutrality with a parametric approach, we also provide parametric

estimates of the factor bias of technical change and TFP growth with potential non-neutral

technical change. In this respect, we followed Kumbhakar et al. (1999) by estimating three

alternative translog production function specifications. First, assuming Hicks-neutral tech-

nical change by including a time trend and its square in a translog function of factor inputs

(i.e. capital, high-skilled labour, lower skilled labour and materials); second, allowing for

factor-biased technical change, by extending the first translog specification with interac-

tion terms between time and (the log of) factor inputs and, finally, in line with Stevenson

(1980), extending the last specification with the third order interaction terms of time and

the product of (the log of) factor inputs 20. These two last specifications are indicated

by Kumbhakar et al. (1999) as the TT1 and TT3model, respectively. The three translog

functions were estimated by sector, for the same sample as used in the nonparametric ap-

proach, including firm-specific fixed effects. Following Kumbhakar et al. (1999), the factor

bias of technical change is determined by the significance of ∂2 lnY
∂t∂lnXi

in TT1 and TT3. The

growth of total factor productivity is calculated as indicated in expression (2).

20See also section 2.2
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In the TT1 specification, the (estimated) factor i bias of technical change is equal to the

estimated parameter α̂it and hence, sector specific but firm and year independent. There-

fore, the sign and significance of the factor bias follows immediately from the parameter

estimate and the ratio to its standard error. However, in the TT3 specification, the factor

bias of technical change is specific to each firm-year combination. As an indication of its

orientation and significance at the sectoral level, we considered a confidence interval of two

times the standard error of its distribution around the mean, which, assuming that the

annual distribution by sector of the bias of each factor is normal, allows to determine sign

and significance of the bias with a 5% error.

In the three models, TFP growth determined as in (2), is firm- and year-specific. By firm

and year, we took the difference between the estimated TFP growth under the assumption

of Hicks neutrality, with the estimated TFP growth in the TT1 and TT3 model, as well

as the difference between the estimated TFP growth for the two factor bias specifications

considered. Next, we verified whether, by sector and year, these differences are on average

significantly different from 0.

For both specifications of the factor bias of technical change considered, we find pervasive

indications of factor biases in technical change and hence, rejection of Hicks neutrality.

However, the orientation of the factor bias appears to be sector-specific: whereas in one

sector indications point at factor-saving technical change, in another we find indications

of factor-using technical change. For the TT1 model this is in particular the matter for

capital, high-skilled labour and materials. For low-skilled labour, in sectors where a bias

is found, the bias pattern is more univocally negative. In addition, the orientation of the

factor bias is sensitive to the estimated specification. While for the TT3 model, indications

of factor biases in technical change are as pervasive as for the TT1 specification, the factor

pattern of the bias only rarely corresponds to the bias derived from the TT1 model: factor

biases have opposite signs (e.g. capital in sector 10 and 13), factor biases appear in the

TT3 specification that are absent in the TT1 model and vice versa. Overall, the TT3

model points to a negative capital bias of technical change and the absence of a (high- as
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well as low-skilled) labour bias.

As regards TFP growth, we notice that, for many years and sectors, its estimation allowing

for factor-biased technical change is (on average) significantly different from the estimation

assuming Hicks neutrality, yet again characterised by substantial sector specificity. In some

sectors, assuming Hicks neutrality implies an overestimation of TFP growth compared to

that of the two models with factor-biased technical change (e.g. sector 13 or 17) but

an underestimation of TFP growth in others (like sectors 18, 22 or 31). However, in

many sectors the difference in TFP growth estimated in the three models, behaves more

erratically, as both over- and underestimation of TFP growth assuming Hicks neutrality

is found. In addition, the estimation of TFP growth is sensitive to the way the factor

bias of technical change is modelled, as it differs significantly between the TT1 and TT3

specification in all the sectors considered, at least for one year. However, more often than

not, the estimated returns to scale in the Stevenson specification are unrealistically high

or low.
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sector capital bias high-skilled labour bias lower-skilled labour bias materials bias

TT1 specification

10 + −

13 − +

16 +

17 + + − −

18 + −

20 + − − +

22 −

23 − +

24 − − +

25 − +

26 + −

27 − +

28 + − +

31 −

TT3 specification

10 − +

13 + +∗ +

16 − −

17 − −

18 + +

20 − − +

22 − +∗ +

23 + −

24 − +

25 − +

26 − −

27 − −

28 +

31 − +
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