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Abstract

When taxes do not sufficiently adjust to government debt levels, the Fiscal Theory of the Price Level
predicts that other variables, such as inflation and output gap, must adjust to ensure the solvency of
public finances. We study the role of optimal debt maturity portfolios in this context, using a New
Keynesian model with both demand and supply-side shocks. Our paper offers new analytical insights
into the mechanisms through which debt maturity composition affects the trade-off between inflation
and output gap: The Persistence, Discounting and Hedging channels. Our findings, based on a rich
prior predictive analysis indicate that the key driving force behind optimal portfolio decisions is the
Hedging channel. Moreover, the optimal maturity composition of debt is driven primarily by the supply
side shocks, rather than by demand shocks. Finally, our results indicate that optimal debt
management is a significant margin to complement monetary policy in stabilizing inflation when debt
solvency is an important constraint.
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Non-technical summary

This research paper examines the impact of public debt maturity structures on the trade-off between
inflation and economic output within the context of the Fiscal Theory of the Price Level (FTPL). This
economic theory suggests that if government debt is not sufficiently backed by future surpluses
(tax revenues), other variables like inflation and output must adjust to maintain debt solvency. The
paper is thus particularly relevant in the current economic climate, where government debt levels
have risen significantly post-COVID-19, and economies face frequent supply-side shocks leading to
inflation volatility.

1. Key Findings:

a) Hedging Against Supply-Side Shocks: The primary factor influencing the optimal maturity
structure of public debt is the need to hedge against supply-side shocks. These shocks
pose significant risks to the government's budget constraint, more so than demand shocks.

b) Optimal Debt Maturity: At the optimal maturity structure, the trade-off induced by the debt
constraint is primarily due to demand shocks. This optimal structure allows for a significant
improvement in managing the balance between inflation and output.

c) Complementing Monetary Policy: Proper management of debt maturity can serve as a
crucial policy tool alongside monetary policy, particularly in scenarios where government
debt and surpluses are not balanced.

2. Analytical and Numerical Insights:

• The study identifies three critical dimensions affecting the optimal policy: Persistence,
Discounting, and Hedging. Among these, the Hedging channel is found to be the most
influential.

• Numerical experiments reveal that supply-side (cost-push) shocks have a more substantial
impact on the optimal debt portfolio compared to demand-side shocks.

3. Practical Implications:

• Policymakers can enhance economic stability by targeting a debt portfolio that mitigates the
effects of supply-side shocks, thereby reducing the volatility in the government's budget.

• The findings suggest that optimal debt maturity management can effectively complement
traditional monetary policies to achieve better economic outcomes.

This study contributes to the broader literature on the Fiscal Theory of the Price Level by providing
new insights into the optimal management of public debt portfolios. It underscores the importance of
considering the maturity structure of debt as a strategic tool for economic stabilization.

The paper’s analytical framework and numerical results offer practical guidance for policymakers
aiming to balance inflation and output through strategic debt management.
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1 Introduction

Rising fiscal strain and debt levels following the Covid crisis has brought to surface concerns that govern-

ments in OECD economies may not be able to raise enough surpluses to finance debt over the long-run.1 At

the same time, the world economy has entered a shock-prone era characterised by large supply (cost-push)

shocks and a risk of heightened inflation volatility stemming from a steep trade-off between inflation and

output stabilization. Yet, when public debt is not backed by (future) surpluses, cost-push shocks may not be

the main source of inflation variability. Any shock (including demand shocks which are otherwise possible to

confront with a well designed monetary policy) can potentially lead to a significant inflation-output trade-off

since, in this situation, inflation adjusts to ensure the solvency of public debt. When the shocks that impact

the ‘debt constraint’ are able to reach inflation, then inflation variability can be large (e.g. Leeper and Leith

(2016)).

The Fiscal Theory of the Price Level is the workhorse model that macroeconomists use to investigate the

driving forces of inflation in these types of circumstances. In the context of this framework, it is well known

that Ricardian Equivalence breaks down, and the maturity structure of debt plays a key role in determining

how economic shocks propagate through the economy and ultimately impact inflation and output dynamics.

(Cochrane (2001); Leeper and Leith (2016)). Therefore, the composition of public debt portfolios can alter

the inflation-output trade-off and becomes an important policy margin complementing monetary policy in its

objective to stabilize inflation and output fluctuations.

This paper studies the interactions between monetary policy and public debt portfolios of short and

long term bonds in the Fiscal Theory framework with both supply- and demand-side disturbances. We

construct a New Keynesian model with price rigidities and a fiscal block, the consolidated budget constraint.

Government debt is not backed by taxes and instead government deficits can be financed by inflation which

reduces the real payout of debt and/or by output changes that result in fluctuations in the real interest rates,

bond prices and the present value of government surpluses. We solve a Ramsey policy problem to determine

the optimal structure of debt along with the paths of inflation and output. The objective of the planner is to

minimize the volatility of inflation and of the output gap, as suggested by a second order approximation of

the household welfare function in our model (e.g. Woodford (2003a), Chapter 6).

Using our framework we investigate the optimal maturity policies which enable to alleviate the inflation

and output trade-off. We identify the key driving forces and the relative importance of demand and supply

side disturbances in shaping these policies. Furthermore, we evaluate the relevance of the debt maturity

margin in improving the inflation-output outcomes. Our findings are that the optimal public debt maturity

structure is driven mainly by supply side shocks; the Ramsey policy targets a portfolio that alleviates the

impact of these types of shocks on the government debt constraint and consequently on the inflation-output

trade-off induced by the constraint. Moreover, we find that the effect of managing inflation and output

fluctuations using public debt portfolios can be substantial; the optimal policy can accomplish a considerable

reduction in the volatility of the targeted macroeconomic variables.

Our approach towards reaching these conclusions is incremental. We begin by studying theoretically

how the maturity of debt shapes the inflation-output trade-off. In Section 2 we derive an analytical formula

expressing the trade-off as a function of two terms: the shocks to the Phillips curve (the standard supply shock

induced trade-off in the New Keynesian model) and the current and lagged growth rates of the Lagrange

multiplier attached to the budget constraint. In Ramsey policy models the multiplier captures the impact

of structural shocks on the government debt constraint. We provide an analytical expression showing this
1See e.g. IMF (2021, Chapter 2).
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dependence explicitly.

Our formula identifies three pivotal channels via which debt maturity influences inflation and output, and

which have been emphasized by the existing literature: Persistence, Discounting and Hedging. Persistence

and Discounting are captured by the coefficients on the current and lagged values of the multiplier, whereas

Hedging is measured by the variance of the Lagrange multiplier. Both objects are functions of the debt

portfolio.

The Persistence channel states that, when debt is long term, any shock leading to an imbalance between

the value of debt and the present value of surpluses does not have to be compensated by an abrupt temporary

change in the price level; inflation can persistently change to adjust the real payout of debt which matures

in the distant future. (e.g. Sims (2013); Leeper and Zhou (2021); Leeper and Leith (2016); Lustig et al.

(2008) among others). This results in a smoother trajectory of output since, from the Phillips curve, output

fluctuations are related to the expected growth of inflation.

The Discounting channel, on the other hand, emphasizes that when debt is (at least partly) short-term,

the Ramsey planner will it find advantageous to distort output intertemporally in order to alter real interest

rates and adjust favorably the present value of government surpluses that compensate for debt. This may also

improve the inflation-output trade-off induced by the debt constraint (e.g. Leeper and Zhou (2021)). Using

analytical examples we demonstrate the working of these forces and elucidate our inflation-output formula.

In Section 3 we turn towards the Hedging channel. We consider three types of structural shocks: to

government spending and to the household discount rate (demand factors) and cost-push shocks (supply

factor). The Hedging channel emphasizes that when these shocks hit the economy, they induce fluctuations

in bond prices which well targeted portfolios can take advantage of in order to finance deficits and alleviate

the need of using inflation to do so.

We characterize Hedging analytically as a function of three ’fundamental portfolios’. These are maturity

structures which, in the presence of a single shock in the economy, can fully insulate the government budget.

When such complete hedging is possible, inflation and output evolve as in the standard New Keynesian

model. For demand shocks this occurs when government debt is long term. Long bond prices covary

negatively with the government deficits following a demand shock and issuing long-term debt enables a

drop in the market value of government liabilities in times of high deficits (see e.g. Angeletos (2002);

Buera and Nicolini (2004)). For supply side shocks, the fundamental portfolio hinges on the relative weight

attached to output/inflation in the planner’s objective function. Depending on the relative weight, the risk

for the government budget could be mainly deriving from inflation or mainly from output fluctuations. In

the latter case, cost-push shocks affect the debt constraint through changes in real interest rates and these

can be compensated by long term debt (similar to demand shocks). However, when inflation displays more

volatility following a cost-push shock, the optimal portfolio needs to be tilted towards short bonds to insulate

the government budget: The real value of short term debt is less sensitive to persistent inflation shocks, than

is the analogous real value of long bonds.

In the full model, with the three shocks together, complete hedging is not feasible. We derive analytically

the Lagrange multipliers in the Ramsey solution as a function of the three fundamental portfolios. Deviating

from these portfolios yields an increase in the volatility of the Lagrange multipliers which is proportional to

the variances of the shocks and parameters determining their significance as sources of risk for the budget

constraint.

Our derivations thus show clearly the three factors (Discounting, Persistence, and Hedging) determining

the optimal maturity composition of debt in our Ramsey model. In Section 4 of the paper we turn to a
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numerical analysis in order to investigate which of these three forces exerts a stronger influence on the

optimal public debt portfolio. So as to not constrain our experiments to only one calibration of the model,

we rely on a prior predictive analysis (see Leeper et al. (2017)) whereby we characterize the optimal debt

structure over a plausible distribution of values for the parameters which we can identify as key for the

optimal portfolio. The distributions that we use are standard in the context of DSGE models.

Our main conclusion from the numerical experiments is that while the Persistence and Discounting chan-

nels exert only a small impact on optimal portfolio decisions, the Hedging channel is the main driving force.

Moreover, when we ask which of the three structural shocks accounts for the bulk of Hedging, we find that

it is the cost push shock that has the most significant contribution. Supply-side shocks turn out to be a more

important risk for the debt constraint than demand shocks. The Ramsey optimal policy thus targets a portfo-

lio which nearly eliminates the trade-off between output and inflation induced by the debt constraint in the

presence of supply shocks; what remains is the demand shock induced trade-off and the standard cost-push

New Keynesian trade-off. Moreover, this outcome turns out to be quite close to the New Keynesian optimal

policy without the debt constraint. Our experiments show that accounting for the optimal maturity structure

as a complement for monetary policy is important when public debt is not backed by taxes.

Our work primarily builds upon the previously mentioned papers that examine the interactions between

debt and monetary policies within the Ramsey context (Leeper and Zhou (2021); Schmitt-Grohé and Uribe

(2004); Faraglia et al. (2013); Lustig et al. (2008); Sims (2013); Leeper and Leith (2016); Bouakez et al.

(2018)) and which characterize the welfare-maximizing maturity structure when inflation bears some or all

of the burden of ensuring government debt solvency.23 Our contribution is twofold. First, we provide an

analytical characterization of the inflation output trade-off, a formula which facilitates the transparent explo-

ration of the three critical dimensions of optimal policy: Persistence, Discounting, and Hedging. Second,

we explicitly assess the relative significance of these dimensions, alongside the significance of demand and

supply disturbances.

In terms of analytical solutions, our results complement those of Leeper and Zhou (2021), who have

made significant progress in solving their Ramsey problem. While we will later on highlight differences in

terms of our modelling assumptions and which led us to derive distinct and thus complementary analytical

results, we emphasize that our main contribution relative to Leeper and Zhou (2021) lies in explicitly solving

for the Lagrange multipliers associated with the consolidated budget. Our solution, which expresses the

multiplier as a function of fundamental portfolios, appears to be new to the literature and underscores the

important concept of Hedging.

The second contribution of our paper, which involves disentangling the relative importance of the three

policy margins and structural shocks, also brings novel insights to the existing literature. A well-established
2Much of this work considers optimal policies when the Ramsey planner can set taxes and inflation simultaneously. This may be

a different setup than the one we consider here (we wish to focus on environments in which taxes cannot adjust to make debt solvent)
however our results should also extend to models with optimal distortionary taxation. Intuitively, models with jointly optimal fiscal
and monetary policies are essentially Fiscal theory models. This is so because, unless taxes fully absorb shocks to the debt constraint
(not the solution to a Ramsey program) inflation will also react to these shocks. We thus expect that our insights are applicable to
the broad literature, including papers studying joint policies.

That said, we acknowledge that there may also be significant differences, stemming (for example) from the fact that for optimal
taxes, the Discounting and Hedging channels remain applicable, but not the Persistence channel. In models with joint policies, the
debt maturity affects the optimal policy mix, the relative use of taxes vs. inflation to absorb shocks (e.g. Leeper and Zhou (2021)).
The methodological approach that we follow in this paper to derive analytical solutions can be extended to consider optimal taxation
and evaluate the differences.

3These papers assume full commitment policies. There is also a rich literature studying optimal inflation and debt under no-
commitment. See Eggertsson (2006, 2008); Burgert and Schmidt (2014); Matveev (2021); Leeper et al. (2021); de Beauffort (2023,
2024); Bhattarai et al. (2023a).
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and significant finding in previous studies is that when inflation is tasked with ensuring debt sustainability,

the optimal maturity of debt tends to be long. This result is commonly attributed to the Persistence channel

of inflation. However, our experiments reveal that Hedging plays a more crucial role as a policy margin.

Moreover, our findings demonstrate the possibility that in Ramsey models the optimal debt may be short-

term if the fundamental portfolios predominantly feature short-term debt. We discuss the conditions under

which the optimal portfolios are reversed, favoring short-term debt.

Our paper also relates to a literature on optimal debt management using real macroeconomic models

(Angeletos (2002) and Buera and Nicolini (2004); Faraglia et al. (2019, 2010); Nosbusch (2008); Debortoli

et al. (2017); Aparisi de Lannoy et al. (2022); Greenwood et al. (2015) among others). In these models

optimal debt portfolios serve the purpose of smoothing distortionary taxes across time. Though this is a

different source of distortions than the inflation output trade-off we focus on in this paper, we draw important

insights from this work. Thus, our result that long bonds are useful to hedge against demand shocks basically

echoes the findings of Angeletos (2002), Buera and Nicolini (2004) and Debortoli et al. (2017) in the tax

smoothing context.

Furthermore, an important difference (on the methodological side) between these papers and ours is that

while for its most part the debt management literature studies optimal policies in non-linear business cycle

models relying on numerical approximations, we work with a tractable log-linear model which allows us to

derive analytical solutions expressing portfolios as functions of the shock processes and other measurable

model parameters. This approach which is useful to reduce a complicated portfolio choice problem to simple

formulae that can be estimated from the data, bears some resemblance to the recent work of Aparisi de Lan-

noy et al. (2022). This paper derives transparent closed form solutions for optimal government portfolios as

functions of financial and macroeconomic data moments using second order/small noise Taylor expansions.

In contrast, we constrain attention to constant (steady state) portfolios, employing first order accurate solu-

tions of the model. Whereas the formulae of Aparisi de Lannoy et al. (2022) are richer and include second

order (covariance) terms which are undoubtedly important in the asset pricing/ optimal portfolio context, our

first order analytical approach can be easily integrated with a broad spectrum of empirically estimated DSGE

models, a facet we briefly delve into in Section 4 of our paper.

Finally, our work relates to the vast literature on the Fiscal Theory of the Price Level (e.g. Sargent

et al. (1981); Leeper (1991); Sims (1994); Woodford (1994, 1995, 2001); Cochrane (1998, 2001); Schmitt-

Grohé and Uribe (2000); Bassetto (2002); Eggertsson (2008); Canzoneri et al. (2010); Del Negro and Sims

(2015); Reis (2016); Jarociński and Maćkowiak (2018); Bhattarai et al. (2014, 2023b); Leeper and Leith

(2016); Kumhof et al. (2010); Bi and Kumhof (2011); Benigno and Woodford (2007); Bianchi and Ilut

(2017); Bianchi and Melosi (2017); Leeper et al. (2017); Cochrane (2018); Leeper and Zhou (2021); among

many others).4 From this literature closest to our study is the work of Cochrane (2001). Like us, Cochrane

(2001) studies the optimal composition of public debt in the context of the Fiscal Theory. He assumes a

simplistic Fisherian model with exogenous surplus shocks assuming also that the planner’s objective is to

stabilize inflation. In contrast to Cochrane (2001) we employ a fully fletched New Keynesian model with a

microfounded dual objective for output and inflation stabilization, a New Keynesian Phillips curve, as well

as consider more structural shocks to demand and supply as the sources of risk for the government’s budget

constraint. Our approach is thus more akin to the recent DSGE literature with New Keynesian frictions.

Otherwise, our paper is complementary to Cochrane (2001).
4See in particular Leeper and Leith (2016) for a very comprehensive overview of this literature focusing on the interactions

between monetary and fiscal policy.
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2 The Model

We consider an optimal policy problem in which a Ramsey planner sets the path of inflation, output and debt

subject to the dynamic equations that define the competitive equilibrium. Our framework is a standard New

Keynesian model, featuring monopolistically competitive firms operating technologies which are linear in the

labour input and setting prices subject to adjustment costs as in Rotemberg (1982). The model is augmented

with the consolidated budget constraint. Since this is a standard setup we will describe the competitive

equilibrium using the equations of the log-linear model. We leave it to the appendix to characterize the

household and firm optimal behavior from the (background) non-linear model.
We use the standard notation x̂t to denote the log deviation of variable xt (in the nonlinear model) from

its steady state value, x. The following equations define the competitive equilibrium:

π̂t = κ(Ŷt − Ŷ n
t ) + βEtπ̂t+1 + µ̂t (1)

where κ ≡ − (1+η)Y
θ (φ+ σ Y

C ) > 0.

ît =
Y

C
σEt

(
(Ŷt+1 − Ŷ n

t+1)− (Ŷt − Ŷ n
t )

)
+ Et(π̂t+1 + r̂nt ) (2)

pLbL(b̂t,L + p̂t,L) + pSbS(b̂t,S + p̂t,S) = −SŜt + (1 + pL)bL(b̂t−1,L − π̂t) + pLbLp̂t,L + bS(b̂t−1,S − π̂t) (3)

p̂L,t = −ît + β Etp̂L,t+1 (4)

p̂S,t = −ît (5)

(1) is the Phillips curve at the heart of our model. π̂t represents inflation and Ŷt − Ŷ n
t is the deviation of

aggregate output from its natural level (the output gap). Parameters η < 0 and θ > 0 govern the elasticity of

substitution across the differentiated (monopolistically competitive) goods produced in the economy and the

degree of price stickiness, respectively.5 σ denotes the inverse of the intertemporal elasticity of substitution

and φ is the inverse of the Frisch elasticity of labour supply. These objects influence the slope of the Phillips

curve, κ, through their influence on the response of hours/output to changes in marginal costs (wages). µ̂t is

a cost-push shock, a shifter of the inflation output trade-off defined by the Phillips curve.

(2) is the standard log-linear IS-Euler equation which prices a short term nominal asset. ξ̂ is a preference

shock which affects the relative valuation of current vs. future utility by the household. A drop in the value of

ξ̂t (relative to the expected value Etξ̂t+1) makes the household relatively patient, willing to substitute current

for future consumption.

Equation (3) is the consolidated budget constraint. The left hand side (LHS) of this equation represents

the value of debt issued in period t. The terms b̂t,L, and b̂t,S , denote the quantities of real net government

bonds issued in t and held by the private sector. We assume that debt can be issued in two different debt

instruments: A short term (S) bond that pays one unit of nominal income in one model period, and a long

term bond (L) which is a consol that pays 1 unit of income in perpetuity. The prices of these assets are

denoted p̂t,S and p̂t,L respectively.6

The term SŜt denotes the surplus of the government. We will focus on equilibria where the surplus is
5θ is the parameter that governs the magnitude of price adjustment costs in the standard quadratic cost function of Rotemberg

(1982). When θ equals zero prices are fully flexible.
6Focusing on these types of assets, simplifies considerably our analytical formulae and moreover, it is a common modelling

assumption in the debt management literature we referred to previously (see e.g. Debortoli et al (2018)). Our findings can, how-
ever, be easily generalized to alternative structures, for example when we make the also common assumption that long bonds are
perpetuities paying decaying coupons. Assuming decaying coupons will not change our conclusions.
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exogenous with respect to the debt level and so government debt is not backed by taxes. Specifically,

SŜt = −(1 + ω1)GĜt − ω2(Ŷt − Ŷ n
t )

where Ĝt denotes government spending in t. Parameters ω1, ω2 are not zero when the government uses a

mixture of lump sum/transfers and distortionary taxes/subsidies which are kept constant through time. For

example, when the government sets a subsidy s to eliminate distortions from monopolistic competition but

otherwise its revenues derive from lump sum taxation, then ω1 =
sY

Y+ϕ
σ
C
> 0 and ω2 = sY

(
1 + ϕ+ σY

C

)
>

0. Alternatively, if distortionary taxes are levied on (labour) income, or the government’s transfers to the

private sector depend on macroeconomic conditions (i.e. the output gap) then the parameters ω1, ω2 can be

adjusted accordingly to reveal the dependence of revenue on output and spending levels. We could then have

(for example) ω2 < 0 in which case a shock that induces a drop in the output gap leads to a fiscal deficit.

Our experiments below will be conducted for different values of the ω2 parameter.

Moreover, we define Ŷ n
t and r̂nt , the natural output level and the natural interest rate respectively, as:7

Ŷ n
t ≡ G

Y + ϕ
σC

Ĝt

r̂nt ≡ − ϕG

Y + ϕ
σC

(EtĜt+1 − Ĝt)− Et(ξ̂t+1 − ξt)

Finally, equations (4) and (5) give the bond pricing formulae for long and short term bonds. (5) sets the

short term price equal to the negative of the short-term nominal rate of interest ît. (4) defines the recursive

formula that determines the price of long-term debt in period t.

Iterating this equation forward and substituting the equilibrium prices in (3) and rearranging, it is possible

to write the consolidated constraint as:

βbS

(
b̂S,t − σ

Y

C
(EtỸt+1 − Ỹt)− Etπ̂t+1 − r̂nt

)
+

bL
β

1− β

(
b̂L,t − σ

∑
j≥1

βj−1Y

C
(EtỸt+j − Ỹt+j−1)−

∑
j≥1

βj−1Etπ̂t+j −
∑
j≥1

βj−1r̂nt+j−1

)
=

(1 + ω1)GĜt + ω2Ỹt + bS(b̂S,t−1 − π̂t) + bL
1

1− β
(b̂L,t−1 − π̂t)

− β

1− β
bL

(
σ
∑
j≥1

βj−1Y

C
(EtỸt+j − Ỹt+j−1) +

∑
j≥1

βj−1Etπ̂t+j +
∑
j≥1

βj−1r̂nt+j−1

)
(6)

where for convenience we use the notation Ỹt = Ŷt − Ŷ n
t to define the deviation of output from its natural

level (the output gap).

2.1 Optimal Policy

Objective Function. Ramsey policy chooses the paths of the competitive equilibrium quantities and prices

to maximize the following policy objective:

−1

2
E0

∞∑
t=0

(
π̂2t + λY Ỹ

2
t

)
(7)

7See Woodford (2003a) or Galı́ (2015).
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In the appendix we derive (7) as a second order approximation of the household utility function (see e.g.

Woodford (2003a, Chap. 6)). For this microfounded objective, λY = 1
θ

(
σ YC +φ

)
is the appropriate weight

attached to the output gap. Our main results below concern the microfounded weight λY . However, we will

establish formulas applicable to any λY ≥ 0 as this broader approach enables us to highlight clearly how

the relative weight attached to output influences the optimal policies. Additionally, solving explicitly for

λY = 0 (the optimal policy focuses on inflation stabilization only) and λY → ∞ (neglecting the relative

weight on inflation) will offer analytical convenience in certain cases, when otherwise algebraic expressions

are too complex to easily interpret. The insights that we can derive from these solutions will be valuable to

understand the determinants shaping the optimal policy under the welfare based criterion.

Policy Program. We now describe the optimal policy problem. The following definition states formally

the Ramsey program.

Definition (Ramsey Policy): The optimal policy solves:

max
(bL,bS) {d̂t, ˆ

πtỸt}t≥0

−1

2
E0

∞∑
t=0

(
π̂2t + λY Ỹ

2
t

)

subject to (1), (6),

dd̂t = bS b̂t,S +
1

1− β
bLb̂t,L

and bS +
bL

1− β
=

S

1− β

A few comments are in order. Firstly, it’s important to note that while the preceding paragraph derived

the competitive equilibrium expressions for ît, p̂S,t, p̂L,t, these elements need not be included as constraints

in the Ramsey program. By utilizing the paths of the variables determined by the Ramsey planner, one can

employ the Euler and bond pricing equations to reconstruct the sequence ît, p̂S,t, p̂L,t. Consequently, we can

omit (5), (4), and (2).

Secondly, considering that our log-linear model doesn’t uniquely define the optimal portfolio sequence{
b̂S,t, b̂L,t

}
t≥0

, we substitute the quantities of short and long bonds with the total debt face value variable,

d̂t. The optimal policy will thus set d̂t and this is equivalent to any combination of b̂S,t and b̂L,t that results

in the same path of d̂t.

Moreover, although the specific composition of b̂S,t, b̂L,t won’t influence the optimal policy, as will

become apparent later, the steady state quantities (bL, bS) will impact the solution. We assume that the

planner optimally sets (bL, bS) alongside the remaining variables to maximize welfare, while adhering to

bS + bL
1−β = S

1−β , the steady state intertemporal budget constraint.

The bulk of our analysis below explores the optimal composition of public debt in terms of (bL, bS).

Notice that the inclusion of these variables in the Ramsey policy essentially makes ours a non linear-quadratic

program. To solve for the optimal portfolio composition we therefore proceed in two steps: First, we fix

(bL, bS) and solve a linear quadratic program to determine the optimal sequence
{
d̂t, π̂t, Ỹt

}
t≥0

through

solving the system of first order conditions. Then, we vary (bL, bS) to determine the portfolio by tracing the

upper envelope defined by the optimality conditions in the first step. This iterative approach allows us to map
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out the range of feasible solutions, and characterize the optimal maturity composition of debt.

Finally, note that the analogue of our approach in a fully non-linear context would be to determine opti-

mally the proportions of short and long bonds in the government’s portfolio and hold the maturity composi-

tion constant letting the government vary total debt over time. It turns out that such a solution to a non-linear

model aligns closely to the fully optimal portfolio composition, wherein the share of short-term debt can

fluctuate over time. Ramsey models with fully optimal portfolios typically predict that the proportions of

short and long bonds are constant or display little variation over time.8 Therefore, even though our exercise

restricts attention to cases where the maturity of debt is held constant, this assumption is not too restrictive

for fully non-linear models.

2.2 Optimality

We solve for the first step optimal policies using a Lagrangian.9 Attach a multiplier ψπ,t to the Phillips curve

and ψgov,t to the consolidated budget. The first order conditions of the Ramsey program can be written as:

−π̂t +∆ψπ,t + bS∆ψgov,t +
bL

1− β

∑
j≥0

∆ψgov,t−j = 0 (8)

−λY Ỹt − ψπ,tκ+ bSσ
Y

C
∆ψgov,t + bLσ

Y

C

∑
j≥0

∆ψgov,t−j − ω2ψgov,t − σ
Y

C
Sψgov,t = 0 (9)

ψgov,t − Etψgov,t+1 = 0 (10)

(see appendix). (8) is the first order condition for inflation, (9) is the derivative of the Lagrangean with

respect to the output gap and finally, (10) is the optimality condition for debt.

According to the above conditions, under the optimal policy, inflation and output are functions of the

current and lagged values of the Lagrange multipliers ψgov,t, ψπ,t. Moreover, from (10) the multiplier on the

government budget follows a random walk process.

To interpret these results consider first the case where ψgov,t = 0 for all t. Notice that this corresponds

to a scenario in which the consolidated budget constraint does not influence the optimal solution. Under this

assumption, and combining what is left from (8) and (9) into a single equation, we get:

π̂t +
λY
κ

∆Ỹt = 0 (11)

Equation (11) describes the standard inflation-output trade-off under optimal policy with commitment in the

New Keynesian model (e.g. Giannoni and Woodford (2003)).

Now, consider bringing back the multipliers ψgov. We can write this trade-off equation as follows:

π̂t +
λY
κ

∆Ỹt = bS
σ

κ

Y

C
(∆ψgov,t −∆ψgov,t−1) + bL

σ

κ

Y

C

∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)+

−ω2

κ
∆ψgov,t − S

σ

κ

Y

C
∆ψgov,t + bS∆ψgov,t +

bL
1− βδ

∑
j≥0

∆ψgov,t−j (12)

8See e.g. Angeletos (2002); Buera and Nicolini (2004); Faraglia et al. (2019).
9Following numerous papers, we assume a timeless perspective. As is well known, solving for optimal policies under this

assumption, requires to introduce additional constraints on the initial allocation (e.g Woodford (2003b)), or the program can be
stated in terms of an objective function that accounts explicitly for the lagged Lagrange multipliers at the beginning of the planning
horizon (e.g Faraglia et al. (2016)). To avoid introducing explicitly all these elements we do not state the Lagrangian here.
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which reveals that π̂t + λY∆Ỹt is now a function of the current and lagged values of the multiplier attached

to the consolidated budget.

What do these terms capture? Shocks that hit the economy will impact the value of debt. When the

debt constraint affects the optimal policy solution, inflation and output will need to adjust in order to satisfy

the consolidated budget constraint and thus to ensure the solvency of debt. The terms ∆ψgov,t−j essentially

capture the influence of shocks when they are filtered through the consolidated budget constraint.

To clarify this further, let us state the intertemporal consolidated budget constraint which we can derive

from (6) through forward substitution. This object reads:

Et
∑
j≥0

βj
(
− ω1Ĝt+j − ω2Ỹt+j − σ

Y

C
S(Ỹt+j − Ỹt) + S(

−r̂nt −r̂nt+1−...−r̂nt+j︷ ︸︸ ︷
Gϕ

Y + ϕ
σC

(Ĝt+j − Ĝt) + ξ̂t+j − ξ̂t)

)
=

bS(b̂S,t−1 − π̂t) +
1

1− β
bL(b̂L,t−1 − π̂t) + bLβEt

∑
j≥1

βj−1

[
−σY

C
(Ỹt+j − Ỹt)−

j∑
k=0

r̂nt+k −
j∑

k=1

π̂t+k

]
(13)

and it links the present discounted value of the surplus (terms in the top row of (13)) to the real value of debt

outstanding in t (terms in the bottom row). Consider a shock which lowers the intertemporal surplus relative

to the value of debt. In response to such a shock, the constraint tightens, and the value of the multiplier

ψgov,t increases. To satisfy the constraint the planner needs to engineer a drop in the real payout of debt.

This requires to increase current inflation-output and also possibly adjust these variables in the future (if debt

is long term). Whereas the term ∆ψgov,t in (12) captures the effect of a shock that occurs in t on current

inflation and output, the lagged terms capture the influence of past shocks on inflation and output in t.

Finally, note that the multiplier ψgov evolves as a random walk because the planner wants to spread

the distortions associated with using inflation to satisfy the intertemporal constraint, evenly across periods.

This is a standard property of optimal Ramsey policy (e.g. Aiyagari et al. (2002); Schmitt-Grohé and Uribe

(2004); Lustig et al. (2008); Faraglia et al. (2013, 2016), among others).

2.3 Optimal Inflation-Output Trade-offs

We now present our main formula for the inflation output trade-off. Combining (12) with the Phillips curve

to substitute out output growth, we derive the following difference equation for inflation:

Etπ̂t+1 −
(
κ2

λY β
+

1

β
+ 1

)
π̂t +

1

β
π̂t−1 = − 1

β
∆µ̂t − ζt −

κ2

λY β
O(∆ψgov) (14)

O(∆ψgov) picks up all the terms involving the Lagrange multiplier in (12) and ζt is a shock to the expectation

of inflation (see appendix). The two roots of the characteristic polynomial are:

λ1,2 =
1

2

[
(
κ2

λY β
+

1

β
+ 1)±

√
(
κ2

λY β
+

1

β
+ 1)2 − 4

β

]
with one root being stable (say λ1) and the other unstable (λ2 > 1).

In the appendix we prove the following Proposition:

Proposition 1 (Inflation-Output Trade-off): Optimal inflation and output in the Ramsey policy equi-
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librium are given by:

π̂t =

New Keynesian Trade-off︷ ︸︸ ︷
λ1π̂t−1 +

1

βλ2

1

1− ρµ
λ2

µ̂t −
1

βλ2

1

1− ρµ
λ2

µ̂t−1 +

Debt Constraint Trade-off︷ ︸︸ ︷(
ν1 − ν2L+ ν3

∑
j≥0

Lj
)
∆ψgov,t (15)

Ỹt = λ1Ỹt−1 +
1

κ

1

βλ2

(
1 + β − β(λ1 + λ2)

)
1− ρµ

λ2

µ̂t︸ ︷︷ ︸
New Keynesian Trade-off

+
1

κ

(
ν4 − ν2L+ ν3(1− β)

∑
j≥0

Lj
)
∆ψgov,t

︸ ︷︷ ︸
Debt Constraint Trade-off

(16)

ν1, ν4 := Impact

ν2L =
1

λ2

κ2

λY β
bS
σ

κ

Y

C
L := Discounting

ν3
∑
j

Lj :=
1

λ2

κ2

λY β

bL
1− β

(
1

1− 1
λ2

)
∑
j

Lj := Persistence

∆ψgov,t = ν5

uG,tuξ,t

uµ,t

 := Hedging

and L is the lag operator.

Equations (15) and (16) (along with the definitions that follow) are our formula for the inflation-output

trade-off under Ramsey policy. The leading terms (first box) represent the standard inflation-output trade-off

in the New Keynesian model. The second box is the trade-off induced by the debt constraint and is a function

of the current and lagged values of the multiplier ψgov.

We will devote the next few paragraphs to interpret the formula in Proposition 1. Consider first the

leading terms in (15) and (16), the trade-off in the standard New Keynesian model. The property that inflation

does not react to the spending and preference shocks in this model is easy to understand. Since the planner

smooths deviations of output from its natural level, government spending shocks will not impact the Phillips

curve and effectively will not be driving an inflation-output trade-off. The same holds for preference shocks,

which only produce fluctuations in the natural rate of interest. Optimal policy can perfectly stabilize the

target variables in response to these shocks. This is the well known divine coincidence property.

Cost-push shocks, however, induce a trade-off between output and inflation. According to (15) this is

resolved by making inflation partially absorb the shock, depending on the weight attached to output stabiliza-

tion in the policy objective function. If λY is a very small number, then λ2 approaches infinity and cost-push

shocks do not exert any influence on inflation. Conversely, if λY is infinite (equivalent to the planner only

seeking to stabilize the output gap) then λ2 → 1
β and all of the effect of the cost-push shock is absorbed by

inflation.

Consider now the persistence of inflation, λ1. The higher is λY the higher is this coefficient. Therefore,

attaching a larger weight to output stabilization yields a more persistent inflation process. The intuition be-

hind this property is simple: Since from the Phillips curve output variability is proportional to the variability

10



of the changes in inflation, the planner makes inflation react persistently to shocks in order to smooth the

output target. In the limit, when policy only cares about smoothing output fluctuations, then λ1 = 1 and

inflation displays a unit root.

These results are standard properties of optimal policy in the New Keynesian model. We now turn

towards the terms in the second box in (15) and (16) to explain how the debt constraint influences policy.

That these terms also lead to an inflation-output trade-off is already evident from the formula in Proposition 1:

The ’shock’ ∆ψgov enters into (15) and (16) in the same manner as the cost-push shocks, inducing volatility

in inflation and the output gap under the optimal policy. Moreover, according to Proposition 1 ∆ψgov is itself

a function of the 3 structural shocks of the model:
[
uG,t, uξ,t, uµ,t

]
denotes the vector of i.i.d innovations of

the processes Ĝt, ξ̂t, µ̂t,. ν5 is a 1× 3 vector of appropriate coefficients. Thus, the debt constraint induces a

trade-off for optimal policy which is driven by both demand supply side shocks. This trade-off depends on

the debt portfolio bS , bL and on the parameter λY , as well as on their interactions.

We will now turn to explaining these features of the model. To do so, in the next subsection, we will uti-

lize analytical examples focusing on the terms labeled Persistence and Discounting in Proposition 1 (objects

ν2L and ν3
∑

j L
j) and we will also clarify the Impact terms (objects ν1 ν4).10 In Section 3, where we will

explain in detail the concept of Hedging we will complete our derivations by introducing a general analytical

solution for the vector ν5 and showing explicitly the dependence of its elements on the bond portfolio. We

will then be in place to solve for the optimal debt maturity composition.

2.4 Persistence and Discounting

We begin by rewriting the intertemporal budget constraint (equation (13)) as

Shockt = −σEt
∑
j≥0

βj
Y

C

(
bL − S

)(
Ỹt+j − Ỹt

)
− bS π̂t − bLEt

∑
j≥0

βj
( j∑
k=0

π̂t+k

)
(17)

On the LHS of (17), the term Shockt represents a shock to the intertemporal debt constraint. Note that though

this can be thought of as a term that groups together the structural shocks of the model, for our analytical

examples in this subsection, we will treat this term simply as a one off shock to the intertemporal surplus.11

Our first analytical result characterizes the optimal inflation output trade-off in a Fisherian version of the

model, setting σ = 012. For tractability, we focus on the cases where debt is either only short-term or only

long-term.
10Though Proposition 1 did not provide an analytical expression for the Impact coefficients, our derivations below show these

coefficients in special cases of the model. See appendix for the general solution.
11From (17) we get:

Shockt ≡ Et

∑
j≥0

βj

(
− ω1Ĝt+j + (S − bL)(

Gϕ

Y + ϕ
σ
C
(Ĝt+j − Ĝt) + ξ̂t+j − ξ̂t)

)
and so Shockt can be thought of as a term which groups together the structural shocks. Notice that according to this expression
Shockt depends also on the portfolio composition (bL). This dependence is at the core of the Hedging argument which we develop
in Section 3. Thus, in our examples in this section, we think of Shockt simply as a disturbance leading to an imbalance in the
intertemporal debt constraint in order to abstract from Hedging. This approach will prove useful later on (in section 4) to separately
study separately the Persistence and Discounting channels in our quantitative model.

12Assuming σ = 0 is a common modelling setup in the Fiscal theory (see for example Cochrane (2001)) . It amounts to assuming
that real interest rates are exogenous and hence output fluctuations do not play any role in debt stabilization. This is a convenient
setup to focus on the impact of inflation on the intertemporal solvency of debt.
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Example 1 (Persistence): Assume σ = 0. i) When debt is only short-term (bS > 0, bL = 0) the optimal

inflation output trade-off is:

π̂t = λ1π̂t−1−
1

bS
Shockt︸ ︷︷ ︸

≡ν1∆ψgov,t

(18)

Ỹt = λ1Ỹt−1−
1

κ
(1− λ−1

2 )
1

bS
Shockt︸ ︷︷ ︸

≡ν4∆ψgov,t

(19)

ii) When debt is only long-term
(
bS = 0, bL > 0

)
and moreover λY = 0, optimal inflation and output

are given by:

π̂t = −(1− β)2

bL

t∑
j=0

Shockt−j︸ ︷︷ ︸
≡ν3

∑
j≥0 L

j∆ψgov,t

Ỹt = −1

κ

(1− β)3

bL

t∑
j=0

Shockt−j︸ ︷︷ ︸
≡(1−β)ν3

∑
j≥0 L

j∆ψgov,t

(20)

Consider first part i) of Example 1. When debt is only short term, the intertemporal budget can be written

as:

Shockt = −bS π̂t (21)

Thus, a negative Shockt (equivalent to a drop in the intertemporal surplus) will tighten the constraint. We

then have ∆ψgov,t > 0. From Proposition 1, ν2 = ν3 = 0 (since bL = σ = 0) and therefore only the terms

labeled ’Impact’ ν1, ν4 will determine the solution for output and inflation. According to (18) the impact

of the shock to inflation is − 1
bS

regardless of the policy objective λY . Attaching a higher weight to output

smoothing makes inflation more persistent, keeping the impact of the shock to inflation constant.

When debt is short term, a negative surplus shock can only be compensated by raising inflation in t.

Higher persistence of inflation is thus wasteful from the point of view of fiscal solvency but it is desirable

because of the standard New Keynesian trade-off considerations: a more persistent response of inflation to a

shock leads to a smoother trajectory of output. This trade-off is evident in (19): (1 − λ−1
2 ) is decreasing in

λY .

Next, consider part ii). With only long term debt, the intertemporal debt constraint is:

Shockt = −bL
∑
j≥1

Etβ
j

[ j∑
k=0

π̂t+k

]

and a shock to the surplus can now be compensated with a rise in inflation in t and in any period after t,

since debt is a perpetuity. The optimal policy is then to make inflation follow a random walk, as this enables

to minimize the convex losses from inflation variability. In this case, the impact term (ν1) equals zero and

ν3
∑

j L
j determines the solution for inflation.

Part ii) of Example 1 assumes λY = 0 for analytical convenience.13 The simple result that we derived
13An analytical solution for the general case is possible, but the algebra is cumbersome and so we leave it for the appendix.
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however is revealing of an important property concerning the interaction between the New Keynesian infla-

tion output trade-off and the trade-off induced by the debt constraint. With λY = 0, the New Keynesian

trade-off would make inflation an i.i.d process, since output fluctuations do not matter for the planner’s ob-

jective. However, the optimal policy with long term debt makes inflation a random walk, a result that would

also be consistent with a very large weight on output stabilization. Besides being an important illustration

of the interactions between the two trade-offs, this result also suggests that with long debt the objectives of

smoothing inflation and output tend to align, diminishing the significance of λY in determining the optimal

policy. This property is well known to the literature (see e.g. Leeper and Zhou (2021) among others).

Our next example demonstrates a different angle via which the debt composition affects the inflation

output trade-off.

Example 2 (Discounting): Assume that debt is only short term, σ > 0 and λY = 0. Optimal inflation is

given by:

π̂t = − 1

bS

Shockt

1 + βω̃
1−β

[
1 + ω̃

1+ω̃

]
︸ ︷︷ ︸

≡ν1∆ψgov,t

+
1

bS

ω̃

1 + ω̃

Shockt−1

1 + βω̃
1−β

[
1 + ω̃

1+ω̃

]
︸ ︷︷ ︸

≡−ν2∆ψgov,t−1

(22)

where ω̃ ≡ σ
κ
Y
C .

Equation (22) shows how the inflation process changes with the assumptions we made in Example 2.14

Notice the new element in the solution for inflation (relative to the solution in Example 1) is the Discounting

term ν2L. The presence of this term implies that the shock does not only exert an impact effect on inflation,

but also the lagged value of the shock affects inflation. Thus, in response to a negative Shock in t, inflation

will increase on impact and but after one period, it will turn negative. Subsequently, inflation will be zero.

What is going on? When the planner is not concerned about output stabilization, targeting a negative

inflation rate one period after the shock hits, leads to a stronger reaction of output on impact. Thus, a higher

output level is possible, and this is warranted to reduce the magnitude of the response of inflation to the

shock. A simple inspection of the intertemporal budget is sufficient to clarify this.

Shockt = σS
∑
j≥1

Etβ
j(Ỹt+j − Ỹt)− bS π̂t

= σS
1

κ
βEtπ̂t+1︸ ︷︷ ︸

≡σS
∑

j≥1 Etβj Ỹt+j

−σS β

1− β
Ỹt − bS π̂t =

σS

κ

β

1− β
Etπ̂t+1 − (bS +

σS

κ

β

1− β
)π̂t

Focus on the top equality. A negative Shock creates an imbalance between the LHS and the RHS of the

equation and it can be compensated by either higher inflation or higher output in t. In particular, targeting

a higher Ỹt reduces the real interest rates rates of future (constant) surpluses, increasing the intertermporal

surplus. This is the Discounting channel.

Note that assuming λY = 0, implies that the planner will find advantageous to shift as much of the

burden as possible to output. The bottom equation clarifies how inflation in t + 1 matters for this. We have

used the Phillips curve, to substitute out output. The last equality thus decomposes the response of output in

terms of the responses of date t and t+ 1 inflation rates.
14The derivation for output can be found in the appendix.
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According to this expression, a negative Shock can be financed by higher date t inflation or by lower

expected inflation in t + 1. It should not be surprising that making inflation mildly negative in t + 1 is

preferable to setting Etπ̂t+1 = 0 and concentrating all of the adjustment on period t inflation, since the

losses from inflation are convex.

The appendix extends Proposition 2 to the case where λY > 0. In this case, inflation becomes persistent,

and the positive impact effect dominates over discounting and therefore seeing a switch in the sign of inflation

becomes less likely. Targeting a smoother output trajectory reduces the incentive of the planner to distort

output intertemporally in order to ensure the satisfaction of the intertemporal budget constraint. Still, inflation

continues responding to the lagged Shock, which implies that the Discounting channel remains significant.

Consider now the case where debt is only long term and σ > 0. Then, distorting output intertemporally

is never optimal regardless of λY . To see this, consider equation (17) noting that when bL = S the first term

on the RHS drops. The solution for inflation in this model is quite similar to part ii) of Example 1.

2.4.1 Discussion. Examples 1 and 2 helped us elucidate a few noteworthy features of the formula in

Proposition 1. The Persistence and Discounting mechanisms of optimal policy we studied are not new to the

literature (see e.g. Leeper and Zhou (2021); Leeper and Leith (2016)). However, highlighting them has been

an important groundwork for the characterization of the optimal debt policies in the model. Furthermore, the

formulae that we derived in this subsection are complementary to the content of Leeper and Zhou (2021).

Whereas, Leeper and Zhou (2021) setup a more complicated model in which the Ramsey planner sets fiscal

and monetary variables simultaneously, we solve the standard New Keynesian model augmented with the

consolidated budget and assuming constant taxes. This enabled us to augment the usual trade-off equations

of that model with the additional elements induced by the debt constraint in (15) and (16).

Our next task is to solve explicitly for ∆ψgov which will link the trade-off induced by the debt constraint

with the structural shocks of the model. We thus turn to the Hedging channel of optimal policy.

3 The Hedging Channel

3.1 Complete Hedging against spending, preference and cost-push shocks.

Our analytical solution derives ∆ψgov as a weighted sum of the structural disturbances to demand and supply.

The weights can be conveniently expressed as functions of three ’fundamental portfolios’ which we will

derive in this subsection.

More specifically, we will consider model versions in which there is only one structural disturbance (at a

time). Then, we will find a portfolio which will fully insulate the government budget constraint from the risk

associated with this structural shock. If such a portfolio exists, it will fully eliminate the trade-off induced

by the debt constraint, ensuring that ∆ψgov,t = 0 for all t. Inflation and output will evolve as in the standard

New Keynesian framework.

This approach to portfolio management essentially follows Angeletos (2002) and Buera and Nicolini

(2004). These papers consider a debt management exercise in which an optimizing government sets the

portfolio to ensure that the intertemporal budget constraint (given a desirable path of taxes) holds at all times

and in all contingencies. Similarly, we consider here a policy exercise in which a desired path of inflation

(the optimal path in the New Keynesian model) can be supported through portfolios that ensure satisfaction

of the intertemporal budget in all states and in all periods.
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We do this separately for each of the shocks, since finding a portfolio that can simultaneously absorb

preference, spending and cost-push shocks is not possible.15 However, the three fundamental portfolios

that we derive in this paragraph, will be an important benchmark for the optimal debt maturity policy in

full model (when all shocks can occur simultaneously). Our analytical solution for the term ∆ψgov,t in the

next section will relate the sources of the volatility of ∆ψgov,t to the deviations of debt maturity from the

fundamental portfolios.

For the sake of brevity we relegate all derivations to the appendix. We state the formulae for the three

portfolios in the following Proposition:

Proposition 2 (’Fundamental Portfolios’): Consider the solution (bS , bL) in the Ramsey Program

with one source of risk for the government budget. Then, ∆ψgov,t = 0 for all t and the optimal level of long

term debt satisfies:

i) bGL = S + (1+ω1)
1−ρG

Y+ϕ
σ
C

ϕ
1−β
β when spending shocks are the source of risk for the government budget.

ii) bξL = S when preference shocks are the risk for the government budget.

iii)

bµL =

ω2
κ ( 1

1−βρµ − θ1) + S βω̃
(1−β)

[
(θ1 − 1

1−βρµ )(1− ρµ) + θ1(1− λ1)

]
+ S

1−β θ1

βω̃
(1−β)

[
θ1(1− λ1) + (1− ρµ)(θ1 − 1

1−βρµ )

]
− θ1β

(1−β)(1−βλ1)

[
λ1 + (

ρµ−1
(1−βρµ))

]
when cost-push shocks are the risk for the government budget. Moreover, θ1 = 1

βλ2
1

1− ρµ
λ2

. Short term

bonds are given by biS = S−bL
1−β for i = G, ξ, µ

The claim that bµL, b
ξ
L, b

G
L solve the Ramsey program should not be surprising. With one structural shock

the best outcome that the optimal maturity policy can aim for is to eliminate the volatility of inflation and

output attributed to the debt constraint.16

The result in i) states that in order to absorb fiscal shocks the optimal share of long debt needs to exceed

100 percent (short term bonds are negative). This result is easy to interpret in light of well known findings

of Angeletos (2002) and Buera and Nicolini (2004)). When the government issues long term debt it benefits

from the negative covariance between long bond prices and spending shocks. Thus, in times of high spending

needs, the real value of debt drops, enabling to smooth distortions stemming from changes in inflation and
15Angeletos (2002); Buera and Nicolini (2004) focus on optimal debt management when spending shocks are the main source of

risk for government budgets however, (in contrast to us) they use a non-linear model. When non-linearities are present, an optimal
portfolio ensuring satisfaction of the intertemporal budget constraint at all times and in all contingencies can be found when the
number of states is equal to the number of maturities of debt issued. Since we assumed continuous stochastic processes, a nonlinear
version of our model would predict that the government should issue debt using an infinite number of different instruments in order
to eliminate the volatility of inflation and output driven by debt sustainability. Under the linear model we use here however, such an
complex debt policy is not necessary, as all of the (infinitely many) states of a given shock process line up and two bonds become
sufficient.

16Beyond this, in the standard New Keynesian model, the maturity structure obviously has no effect on the inflation output
trade-off.
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the output gap.17

In part ii) of Proposition 2 we state another result which is known in the literature. Hedging against

preference shocks requires a flat maturity structure of debt and at the optimum we have bξL = S and bξS = 0.

(see e.g. Debortoli et al. (2017)). Preference shocks influence the intertemporal surplus through the changes

in real interest rates. However, when long bonds are consols, setting bξL = S implies that the payment profiles

of debt coincide with the stream of net revenues to the government. Then, a negative shock to preferences

increases the present value of surpluses and it increases also the long bond prices by equal amounts.

Part iii) considers supply side shocks and for this case our result in Proposition 2 is new to the literature.

We will thus devote a couple of paragraphs to explain it. Notice first that in contrast to the expressions for

bGL , b
ξ
L which are independent of the weight attached to output stabilization, the expression for bµL depends on

parameters λ1, λ2 (and thus also on λY ). Under complete hedging, demand shocks do not lead to an inflation

output trade-off. Supply shocks do.

Let us simplify by first assuming λY = 0. We then have θ1 = 0 and λ1 = 0 and

bµL = S − ω2

(1− ρµ)

(1− β)

β

C

Y σ
< S (24)

Therefore, assuming that the planner only cares about inflation stabilization, we get that bµL < S and bµS > 0

if parameter ω2 is positive, and bµL > S, and bµS < 0 if ω2 is negative.

To understand this finding, recall that under no output smoothing, inflation will be constant through

time. The cost-push shock thus affects the intertemporal debt constraint through the changes in the path

of output and therefore the Ramsey planner will set the optimal portfolio to exploit output fluctuations and

stabilize debt intertemporally. The way that this can be accomplished is simple to investigate analytically.
17This principle can be illustrated using the intertemporal budget. When fiscal shocks are the only source of risk for the govern-

ment budget, and ∆ψgov,t = 0, the planner can smooth perfectly inflation and close the output gap. (13) can be written as:

Et

∑
j≥0

βj

(
− (1 + ω1)GĜt+j + S

Gϕ

Y + ϕ
σ
C
(Ĝt+j − Ĝt)

)
= bLβEt

∑
j≥1

βj−1

(
Gϕ

Y + ϕ
σ
C
(Ĝt+j − Ĝt)

)
(23)

The terms on the RHS capture the fluctuations in the real long bond price driven by a spending shock in t: An increase in Ĝt will
lower the price of long debt. Then, what is on the LHS is the change in the intertemporal surplus due to the shock: −(1+ω1)GĜt+j

is the direct effect (higher Ĝt+j results in a larger fiscal deficit) whereas S Gϕ

Y +ϕ
σ
C
(Ĝt+j − Ĝt) measures that effect of higher real

rates on the present value of (constant) surpluses S.
Quite evidently, if the leading term on the LHS were equal to zero, then setting bL = S would be required to satisfy (23) at all

t. As the payment profiles of the consol coincide with the constant stream of S government surpluses the sequence of real interest
rates affects both in the same way and so (23) can be satisfied for any G when the maturity structure of debt is flat. However, since
a rise in the spending level leads to a deficit (taxes are constant by assumption), the optimal debt issuance needs to be tilted more
towards long term debt, in order to induce an even bigger drop in the real value of debt when spending levels rise. Thus, bL > S is
the optimal policy.

As it is also evident from the formula for bGL in i), the optimal debt issuance depends on the parameters ρG (the first order
autocorrelation coefficient of the spending processes), Y,C, φ and σ. It is interesting to explore how these parameters affect the
optimal policy. First, note that assuming a higher autocorrelation coefficient implies a larger size of the long bond position is needed
to absorb the fiscal shocks. This finding reflects how the yield curve will respond to a fiscal shock in the model, depending on
coefficient ρG. More persistent shocks, lead to a flatter response of the yield curve and therefore smaller movements in long bond
prices are induced by changes in Ĝt. Then, a larger quantity of long bonds is needed to satisfy (23) and this position needs to be
financed with more short term assets (see Angeletos (2002) and Buera and Nicolini (2004)).

Parameters σ, Y, C, φ exert an influence for two reasons: First, they influence the response of the bond prices to spending shocks,
accounting for the curvature of the utility function of the household. Second, they enter in the definition of the target natural level of
output in the model. Since the goal of policy is to stabilize output around this natural level, it is not surprising that these terms enter
into the calculation of the optimal bond portfolio.
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The intertemporal budget can be written as:

Et
∑
j≥0

βj
(
− ω2Ỹt+j − σ

Y

C
S(Ỹt+j − Ỹt)

)
= bLβEt

∑
j≥1

βj−1

[
−σY

C
(Ỹt+j − Ỹt)

]
(25)

and from the Phillips curve we have Ỹt = − 1
κ µ̂t.

Thus, a positive µ̂t shock will lower the value of debt on the RHS and the discounted surpluses on

the LHS. If this was the only channel through which the cost-push shock affected the debt constraint, then

bL = S would be optimal. However, the lower value of debt also needs to compensate for the term −ω2Ỹt+j

which determines the response of the government’s surplus to output following a cost push shock. If this

elasticity is positive (ω2 > 0) then the LHS of (25) drops less than the RHS. The planner must then issue a

positive amount of short term debt as the value of this debt is not affected by the shock. Opposite, when the

surplus drops following a cost push shock, it becomes optimal to tilt the portfolio more towards long debt

and short term bonds will be negative. We will discuss this implication of the model further below.

Now consider the case where the policy objective only targets output. We then have λ1 = 1, λ2 =
1
β and

θ1 =
1

1−βρµ . The formula in iii) simplifies to

bµL = −S (1− βρµ)

βρµ

The long bond position is negative. When the cost-push shock is only absorbed by inflation it will not impact

the real value of surpluses or the deficit of the government. The LHS of the intertemporal budget is thus

constant and, at the same time, on the RHS, higher inflation reduces the real payout of government debt.

The optimal portfolio is the one that neutralizes the impact of inflation. It is simple to find by solving the

following equation:

−bS π̂t − bLπ̂t − bLβ
∑
j≥1

βj−1
k∑
k=1

π̂t+k = 0

A persistent shock can therefore be absorbed if long term debt is negative enough to satisfy the above condi-

tion.18

The formula in part iii) of Proposition 2 states that the optimal portfolio is somewhere in between these

two cases. A higher λY makes the inflation risk more important for the government budget and leads to

a more negative value of long term debt. In contrast, a low λY means that output fluctuations are a more

significant source of risk and depending on the sign and the magnitude of the ω2 parameter, a more balanced

portfolio could be optimal.

3.2 Hedging in the full model

Proposition 3 derives the solution for ∆ψgov,t in the full model with three structural shocks:

18Recall that bL = S − bS(1 − β) is a smaller number than bS . For a persistent shock having negative bL is the only way to
ensure satisfaction of the intertemporal budget. For a purely temporary cost-push shock, it is not possible to find a portfolio so that
∆ψgov,t = 0.
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Proposition 3: The solution for ∆ψgov,t is

∆ψgov,t =
1

ν6

[(
bGL − bL

)
χG

(
bξL − bL

)
χξ

(
bµL − bL

)
χµ

]uG,tuξ,t

uµ,t

 (26)

where

χG ≡ Gϕ

Y + ϕ
σC

(1− ρG)

(1− βρG)
≈ Gϕ

Y + ϕ
σC

χξ ≡
(1− ρξ)

(1− βρξ)
≈ 1

χµ ≡ ω̃

[
θ1(1− λ1) + (1− ρµ)(θ1 −

1

1− βρµ
)

]
− θ1

(1− βλ1)

[
λ1 + (

ρµ − 1

(1− βρµ)
)

]
The expression for coefficient ν6 is provided in the appendix.

Equation (26) is our formula for Hedging. It expresses ∆ψgov,t as the weighted sum of the three structural

shocks of the model where the weights are functions of the deviations of the long-term debt level bL from

the portfolios bGL , b
ξ
L, b

µ
L. Together with equations (15) and (16), (26) provides the complete characterization

of the inflation output trade-off in our model.

The term
(
biL − bL

)
χi captures the relative importance of shock i in the fluctuations of ∆ψgov,t. When

biL = bL then the shock i will not matter at all for the solution, since the planner has targeted a portfolio

that fully hedges the budget constraint against this shock. Conversely, if bL is far from biL then shock i can

contribute to the variability of ∆ψgov,t. Parameter χi then determines the increase in the variance of ∆ψgov,t
which obtains from the deviation |biL − bL|, and holding constant the variance of the shock i.

To further explore the result in Proposition 3, let us consider the debt management policy which maxi-

mizes Hedging, or equivalently, minimizes the variance of ∆ψgov,t. Letting σ2G, σ
2
ξ , σ

2
µ be the variances of

the structural shocks it is easy to show that

bL,Hedging =
1∑

i∈{G,ξ,µ} χ
2
iσ

2
i

( ∑
i∈{G,ξ,µ}

biLχ
2
iσ

2
i

)
(27)

where bL,Hedging is the minimum variance portfolio. Quite evidently, this portfolio will be tilted towards the

biL for which the product χ2
iσ

2
i is highest.

The expressions in Proposition 3 give sense of the relative magnitudes of the parameters. In standard

calibrations we would have χG < 1 ≈ χξ. Thus, for equal variances of preferences and spending shocks, the

former are a more significant risk for the government budget. Furthermore, assuming for simplicity λY = 0

we get χµ ≈ −ω̃ = −σ
κ
Y
C . A plausible calibration is σ = 1 and the ratio Y

C is strictly greater than (but close

to) 1. Moreover, κ ∈ [0.1, 0.3]. Thus, χ2
µ >> χ2

ξ . Supply shocks then exert a bigger impact of the debt

constraint. Optimal policy will prioritize hedging against these shocks.

This numerical example is indicative of the results that we will derive from solving the model (over a

wide range of parameter values) in Section 4. One of our key findings will be that the optimal portfolio com-

position prioritizes hedging against supply shocks. The analytics of this section shed light on the mechanics

behind this property.

18



3.3 A closed form solution for the loss function.

The portfolio that maximizes Hedging need not coincide with the optimal portfolio in the Ramsey model. To

determine the fully optimal solution one has to first plug the formula (26) into equations (15) and (16), and

given the processes of output and inflation, compute the welfare loss function.

The following proposition derives the loss function when λY = 0.

Proposition 4: Assume λY = 0. Optimal debt maturity can be found by maximizing the following

objective function:

−1

2

∞∑
t=0

βtσ2
π̂,t

= −1

2

Persistence and Discounting︷ ︸︸ ︷
f(bL)

∑
i∈{G,ξ,µ}

[
biL − bL

]2
χ2
iσ

2
i︸ ︷︷ ︸

Hedging

The policy objective is the product of the function f(bL) measuring Persistence and Discounting and the

Hedging term that governs the variance of ∆ψgov,t.

In the appendix we derive f(bL) as the composition of b2L and an inverse function of the structural

parameters of the model. A key property of f is that it is minimized for either very negative or very positive

long bond positions. This property merits a brief comment.

As we saw in Section 2, when debt is only long term, the variability of inflation is reduced, since the

planner can spread distortionary inflation over many periods following a shock (the Persistence channel).

At the same time however, with short term debt the planner could rely on output changes to satisfy the

intertemporal budget and this also lowered inflation variability (Discounting). A portfolio with long term

debt and short term savings, or long term savings and short term debt, effectively enables the planner to

exploit both of these channels of reduction in the variance of inflation.19 The ability to do so is maximized

when bL is either very large or very negative.

This force will be present in our experiments in the next section when we will characterize the optimal

debt policy using the microfounded loss function. Unfortunately, deriving the welfare losses in this case is

not as simple, and so we will rely on the numerical solution of the Ramsey problem, to inspect the properties

of the optimum.20 As in the case of λY = 0 however, the optimal policy in the Ramsey model will balance

the benefit of using Discounting and Persistence against the analogous benefit of targeting a portfolio that

maximizes Hedging.

4 Optimal Portfolios: A DSGE analysis

We now solve numerically the full Ramsey program we laid out in Section 2 to investigate the optimal

maturity structure of debt. The solution compiles all of the forces we analyzed in the previous sections

via which debt maturity impacts the inflation output trade-off. Our task in this section is to characterize the

optimal policy and to quantify the contribution of each force on optimal portfolio management. Furthermore,
19i.e. when bS < 0 and bL > S a reduction in the value of debt needed to compensate for a shock, can occur both with positive

long run inflation and with negative inflation when the shock hits.
20With λY > 0, our analytical formulae are however useful to easily calculate numerically the welfare loss function, as they

represent the impulse responses of inflation and output to the shocks. The welfare losses can then be calculated as the intertemporal
sums of the variances of inflation and output induced by these responses.

This approach is considerably more efficient than calculating the welfare losses using Monte Carlo simulations, especially if a
large number of alternative parameterizations of the model is being considered.
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we are interested in evaluating quantitatively the extent to which optimal debt management can complement

optimal monetary policy in achieving its price and output stability goals.

To solve the model numerically we need to assign values to the parameters. Instead of using a standard

calibration procedure, which requires to constrain our solution to one set of values for the parameters, 21

we rely on a prior predictive analysis (e.g. Geweke (2010); Leeper et al. (2017)). We solve the model over

the joint prior distribution of parameter values and summarize key moments regarding the optimal maturity

structure of debt, based on the resulting distribution of portfolios.22 We present results for various draws

from the distribution to show the robustness of our findings to different parameterizations of the model.

In Table 1 we report the prior distributions that we assume, along with the values of the parameters that we

calibrate directly from the data.23 To motivate the choices of the priors, let us note that the ranges of values

considered are inclusive of estimated values that we found in the empirical literature. For example, risk

aversion coefficients within the range of [1, 3] are compatible with numerous empirical studies and are also

very typical in calibrated macroeconomic models. Furthermore, a sizable empirical literature has provided

estimates of the Frisch elasticity of labour supply. Though most micro-studies suggest that the elasticity is

below unity, in macroeconomic models it is typical to set φ = 1.24 Our choice of the prior for this parameter

is inclusive of both the micro and macro values. Finally, the empirical counterpart for parameters ρξ, ρG, ρµ
and the variances of the shocks can be found in the estimated DSGE models literature. For these parameters

we chose standard prior distribution functions, our assumptions are quite common for DGSE models.

Besides making these choices, another important parameter whose value we need to determine is the

elasticity of the government’s surplus with respect to the output gap (when we hold the spending level con-

stant), ω2.
25 Recall that there are different ways of choosing the value of this parameter. In the stricter sense

of our model (which assumes that the government subsidizes firms to eliminate distortions from monopolis-

tic competition), we have ω2 = sY
(
1 + ϕ+ σY

C

)
> 0. However, if we also consider transfers contingent

on the output gap we can fix the value of ω2 to be zero, or even negative.

Our baseline results are for ω2 = sY
(
1 + ϕ+ σY

C

)
. We make this assumption because we want to have

a model in which there is a steep trade-off between the hedging against preference and cost-push shocks.

Recall our results in Section 3.1. We showed that bξL = S and bµL < S when ω2 > 0 and/or λY is a large

number. However, assuming the microfounded weight in this section, makes λY a small number so that if we

also set ω2 = 0 we would get bµL ≈ S. Then, in our numerical exercises it would be difficult to distinguish

between preference and cost-push shocks in terms of hedging and to evaluate which of the two shocks exerts

a more significant influence on the optimal policy. We thus set ω2 > 0 and in the appendix consider the case
21The calibration approach would perhaps be too restrictive in certain cases. Though for some of the parameters of the model

(e.g. C, Y,G, the average level of debt), the appropriate values can be easily recovered from the data, for other parameters (i.e. the
shock processes, σ, φ, κ) one can find in the literature a wide range of assumed or estimated values. Our formulae in the previous
paragraphs revealed the dependence of the Hedging portfolio on these parameters and it is worthwhile exploring the sensitivity of
the optimal debt maturity to them.

22For further details on this methodology and its application in the context of DSGE models, we refer to reader to Leeper et al.
(2017).

23A standard procedure of calibrating the value of G is to use the sample average for government consumption in the US data.
We therefore assume G = 6.2% of aggregate output. Then, normalizing Y = 1 implies that C = 1 − 0; 062 = 0.938 in the
steady state with zero inflation. Note that these values are standard in the literature. In fact most papers that estimate DGSE models
calibrate exogenously these parameters based on the US data.

24This can in turn be justified on the ground that small elasticities at the micro level, can add up to a large elasticity at the macro
level. The literature has explained that this can be so in heterogeneous agents models when labour supply choices are at the extensive
margin, when there are fixed costs of entry into the labour force etc. We will not summarize this work here, however, it is worth
mentioning these findings to show that setting φ = 1 or lower, can be justified in our representative agent model.

25Clearly, a spending shock will induce an increase in Ỹt and at the same time it will lead to a higher deficit. Therefore, spending
driven deficits are procyclical.
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Table 1: Prior predictive analysis

Priors
Parameter Description Distribution Mean Std. Dev. 90% HPD interval

σg Std. error G shock IG 0.1 1 [0.033 ; 0.249]
σξ Std. error preference shock IG 0.1 1 [0.033 ; 0.249]
σµ Std. error cost-push shock IG 0.1 1 [0.033 ; 0.249]
ρg Persistence G shock B 0.5 0.2 [0.172 ; 0.828]
ρξ Persistence preference shock B 0.5 0.2 [0.172 ; 0.828]
ρµ Persistence cost-push shock B 0.5 0.2 [0.172 ; 0.828]
κ Slope NKPC G 0.25 0.1 [0.111 ; 0.434]
σ Intertemporal elasticity of substitution N 2 0.5 [1.178 ; 2.822]
φ Inverse Frish elasticity N 2 0.5 [1.178 ; 2.822]

Calibrated parameters
Parameter Description Value Target/Source

β Discount factor 0.995 2% annual interest rate in SS
η CES parameter -6.88 Steady state markup
Y Steady-state output 1 Normalisation
G Steady-state government spending 0.062 US data average 1980-2019
S

1−β
Steady-state value of surpluses/debt 240% 60% annual debt-to-GDP ratio

Notes: The table reports the prior distributions of model parameters used in the prior predictive analysis. The third
column indicates the assumed prior distribution (B: beta, G: gamma, IG: inverse gamma, N: normal). The fourth
and fifth columns report the mean and standard deviation of the priors, and the sixth columns provides the 90% HPD
interval. The bottom panel of the table reports the assumed values for the parameters that are calibrated. The last row
explains the respective targets.

where ω2 = 0.

4.1 Baseline Results

Figure 1 summarizes the distribution of the welfare losses as a function of the share of long term debt

over total government debt (x-axis). The solid line corresponds to the median loss function over the prior

distribution and the light blue shaded areas are the 90% HPD intervals for the loss function. The losses are

expressed as percentage deviations from the New Keynesian model (without the debt constraint). A deviation

of say 20%, means that the ratio of loss function of the optimal policy, relative to the loss function of the NK

model, is 1.2. If the percentage deviation is 0, then the model outcome coincides with the NK outcome.

Concentrate first on the solid line which depicts the median losses. Notice that the optimal policy is

to issue some long term debt, the share of the long bonds in the optimal portfolio is roughly 60 percent.

Therefore, the short-term bond quantity is also positive. The portfolio is ‘balanced’ in the sense that it

features both positive long term and short term debt.

Considering the 90 percent intervals shown by the grey areas we can however see that this result may

not hold more generally over the joint distribution of parameter values. The intervals are quite wide, and the

loss function deviations frequently attain much lower values than the median, over a substantial range for the

share of long term debt. In Figure 2 we plot the distribution of the optimal portfolios (left panel) along with

the corresponding deviations of the loss functions evaluated at the optimal policies (on the right). As can be

seen from the left panel, though in most of the cases the shares of long term debt are close to the median,

for a non-negligible fraction of the draws from the distribution we obtain optimal shares that are close to

0 or negative; in some (though much fewer) cases the shares exceed 100 percent. Thus, there is indeed a
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Figure 1: Welfare losses across portfolios

Notes: The figure displays the behaviour of welfare losses as a function of the share of long-term debt in
total debt issuances. The results are obtained by simulating the model over a large sample of parameters
drawn from the prior distributions described in Table 1. The solid blue line depicts the median value of
the micro-founded loss function across all draws. The light blue area provides the 90% HPD interval.

large range of outcomes suggesting that the optimal portfolios are sensitive to some of the parameters of the

model. We next decompose these results, characterizing the influence of the parameters and investigating

how the Hedging vs Persistence/Discounting channels affect the optimal policies.

4.2 What is driving the results?

4.2.1 Hedging vs. Discounting and Persistence. To unpack the driving forces behind the results of the

previous paragraph we first concentrate on the relative importance of the Hedging and the Persistence/Discounting

channels of debt maturity. In Figure 3 we plot the median loss function (solid blue, left scale) alongside two

additional functions of debt maturity (right scale). The black dotted graph shows the ’hedging variance’∑
i∈{G,ξ,µ}

[
biL − bL

]2
χ2
iσ

2
i (see Proposition 4). The minimum value of this graph corresponds to the port-

folio bL,Hedging in (27). Finally, the dashed red line shows the loss function when the only shock in the

economy is a shock to the intertemporal surplus as in section 2.4. In this scenario, Hedging is completely

absent, and the optimal debt structure is determined solely by the Discounting/Persistence arguments.26 This

is analogous to the f(bL) function derived in Proposition 4.

Consider first the red dashed graph which isolates the role of Discounting/Persistence. The optimal

portfolios that yield the most favorable inflation-output trade-off feature either very long-term or very-short
26In constructing this plot, we assumed that the variance of the ’Shock’ is such that the loss function coincides with the model’s

outcome when all debt is short-term. Therefore, the readers should only focus on the portfolios that minimize variances rather than
on the specific magnitudes of these functions.
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Figure 2: Distribution of optimal portfolios

Notes: The figure displays the distribution of the optimal portfolios across draws from the prior distribu-
tion of model parameters. The left panel shows the distribution of the share of long-term debt in total debt
issuances that minimises the microfounded loss function. The right panel shows the associated distribu-
tion of loss function values. Loss values are expressed in deviations from the loss in the ‘New-Keynesian’
version of the model, in which the intertemporal government budget constraint is not a constraint for the
planner.

term debt (shares = ±400 %). This finding should not be surprising given the previous discussion. Portfolios

featuring very long term debt and short term savings (or very long assets and short debt) enable the planner

to benefit from both Discounting and Persistence. However, as is evident from Figure 3, such portfolios are

far from the Ramsey optimum, depicted in the solid blue line. We can thus conclude that Persistence and

Discounting do not significantly affect the optimal policy.

Next, focus on the black dotted graph which traces the hedging variance. The minimal variance portfolio,

bL,Hedging, effectively coincides with the optimal Ramsey solution. It is thus evident that the main factor

behind the optimal portfolio decisions in this version of the model is Hedging.

4.2.2 Hedging against which shock? The green (dashed-dotted, right scale) line in Figure 3 shows the

hedging variance when we shut down preference and spending shocks. At the minimum value of this function

we obtain the fundamental portfolio for cost push shock, bµL. Notice that this object basically coincides with

bL,Hedging and with the optimal Ramsey solution. It is easy to see that the key driving force behind the optimal

portfolio decision in our model is hedging against the cost push shock.

4.2.3 Hedging under different shocks and parameter values. We now consider how alternative pa-

rameterizations of the model affect the optimal portfolio. We plot the median losses of the model when we
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Figure 3: Welfare losses and Hedging variance
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Notes: The figure displays the behaviour of welfare losses components as a function of the share of long-term debt in total debt
issuances. The displayed results depict the median losses over results obtained by simulating the model over a large sample
of parameters drawn from the prior distribution which is described in Table 1. The solid blue line displays the loss function
using the three structural shocks we consider in the paper. The dotted black line shows the Hedging variance described in
text, the dash-dotted green line displays the same variance assuming µ (supply) shocks only, and the dashed red line depicts
the loss function in a model version with surplus shocks only, as in section 2.3.

fix one of the parameters values, assuming that the remaining parameters follow the distributions shown in

Table 1. Thus, in the top left panel of Figure 4 we consider three different values for ρG, the autocorrelation

coefficient of the spending shock, the value that corresponds to the bottom 5 percentile of the prior distribu-

tion (0.17) the median value (0.5) and the 95 percentile value (0.83). The parameters and the values that we

consider in the remaining panels are reported in the graphs.

Consider first the parameters that pertain to the shock processes. According to the graphs varying the

parameter values of σ2G, ρG does little to the optimal portfolios. We continue finding that the optimal share

of long term is close to 60 percent. The same finding emerges when we consider ρξ σ2ξ ; changing the value

of these parameters has very little bearing on the optimal debt structure. Finally, varying σ2µ does seem to

affect the optimal solution a bit. The effect is however not large.

The finding that the optimal portfolio decisions are not driven by parameters related to the spending

process, is not surprising given the results of the previous sections. To understand why, recall that from

(27), bL,Hedging will be tilted more towards bGL when the relative weight for the spending shock, χG is larger.

However, in our numerical solutions χG is always at least one order of magnitude lower than χξ and χµ.

Therefore, increasing the variance of the spending shock is not enough to convince the planner to tilt the

optimal portfolio towards bGL . Furthermore, the persistence of the shock does not drastically affect the coef-

ficient χG. Higher persistence has two main impacts: On the one hand, the shock exerts a bigger effect on

the intertemporal budget constraint; on the other hand, higher persistence flattens the yield curve’s response

to the shock and this makes it more difficult to hedge against it. The latter effect compensates for the former,

and so the weight χG, is nearly independent of ρG.
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For the same reason, ρξ and σ2ξ are unimportant for the optimal portfolio. What however may seem

counter-intuitive is that the variance of the cost-push shock exerts a small influence on the optimal policy.

Note however, that increasing the variance has little effect precisely because the optimal portfolio is already

the one that maximizes hedging against the shock. Therefore, a change in the variance need not lead to a

change in the bond positions.

The bottom left panel in Figure 4 shows that the parameter that impacts the optimal share of long term

debt the most, is the first order autocorrelation coefficient of the cost-push shock, ρµ. Given the results and

the discussion in Section 3, this should not be an odd observation. It reflects that bµL is quite sensitive to

the first order autocorrelation coefficient in line with the analytical expressions we showed in the previous

section. The sensitivity of the optimal portfolio to ρµ also explains the flat part of the loss function in

Figure 1.

Finally, the remaining parameters of the model σ, φ, κ exert a small influence on the optimal bond posi-

tions. Since the effects are not large, we will not offer a discussion of these results. The formulae that we

provided reveal the dependence of the portfolios on the parameters and they can be used to assess qualita-

tively their effects.

To sum up, our analysis identifies Hedging as the most important component of the Ramsey optimal

policy. Moreover, the cost-push shock is the key driving force behind bL,Hedging. The Ramsey planner

prioritizes hedging against this shock and designs the maturity structure accordingly.

4.3 Gains and Losses from Varying Debt Portfolios.

How important is targeting optimal portfolios? We can answer this question by investigating the relative

losses under the optimal policy and in the case where debt maturity is not optimal. The right panel of

Figure 2 plots the distribution of losses under the optimal policy drawing from the joint prior. As the graph

indicates, for the larger part of the parameter space, the losses relative to the NK model are less that 10

percentage points and with the bulk being less than 5 percent.

Figures 1 and 4 show how shifting the composition of debt away from the optimal portfolio impacts

the loss function. As it is evident, shifting the composition away from the optimum, rapidly increases the

losses. In Figure 1, for example, the median losses at the optimum are 5.31%; they become three times

as large (15%) when debt is only long term, and increase up to nearly 30 percent when the share of long

debt is further from the optimum. We get analogous numbers for most of the specifications we considered

in Figure 4. The Ramsey optimal policy is a portfolio that maximizes hedging of the government budget

against the cost-push shock. The excess welfare losses relative to the New Keynesian model at the optimum

are driven solely by the demand shocks. Moving away from this optimal solution increases the losses because

cost-push shocks impact the debt constraint.

These results prove that the debt maturity structure is an important policy margin to reduce the volatility

of inflation and output induced by the debt constraint.

4.4 An approximate formula for the optimal debt maturity structure.

A significant finding of this section is that the key driving force behind optimal portfolios in the model is

Hedging. The Ramsey planner will chose a portfolio close to bL,Hedging which minimizes the variance of

∆ψgov,t. The expression in (27) is thus the approximate solution for the optimal debt maturity policy in the

model.
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Figure 4: Welfare losses across parameter values
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Notes: The figure displays the effect of the parameters governing exogenous shock processes (the persistence of the AR(1)
processes and the standard deviations of innovations) and the inter-temporal elasticity of substitution, Frisch labour elasticity
and the slope of the NKPC, on welfare losses across values of the share of long-term debt. The results are obtained by
simulating the model over a large sample of parameter drawn from the prior distributions described in Table 1, leaving the
parameter of interest constant at the 5th percentile (solid blue lines), the mean value (dashed red lines), and the 95th percentile
(dotted black lines) of its prior distribution, respectively. For each set of simulations, we plot the median values of the loss
function. Top panels show the effects of the persistence and standard deviation of the government spending shock. Middle and
bottom panels show the effects of the persistence and standard deviations of preference and cost-push shocks, respectively.

The analytical results that we have derived expressed this approximately optimal portfolio as a function

of measurable model parameters. Though our approach in investigating the DSGE model has been somewhat

agnostic about the values of the parameters, relying on the prior distributions, obtaining more precise values

through an estimation of the model is feasible. However, our experiments also revealed that the optimal port-

folio demonstrates robustness towards changes in the values of most of the parameters of the model. Notably,

the parameters exerting significant influence primarily relate to the stochastic process of cost-push shocks.

(We will also see in subsection 4.6 that the influence of ω2 is analogous). Hence, using our approximate

formula requires a precise measurement of only a few parameters.
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4.5 Implications for the optimal debt structure in models with inflation.

Our findings have implications with regard to a well known and significant result in the literature, that

when inflation is tasked with ensuring debt sustainability, the optimal maturity of debt tends to be long (e.g.

Lustig et al. (2008); Faraglia et al. (2013); Leeper and Zhou (2021); Sims (2013)). This result is commonly

attributed to the Persistence channel: Long term debt enables to spread inflation distortions over time.

The analytic results that we derived in this paper, enabled us to separate the the Persistence and the

Hedging channels and to evaluate their relative importance in shaping optimal portfolio decisions. Our

experiments revealed that Persistence did not matter much and instead Hedging played a more crucial role

as a policy margin.

This result has significant implications for the optimality of long term bonds in models of debt driven

inflation. If we can find cases in which hedging against shocks requires short term instead of long term

debt, then the Ramsey policy can be reversed, and issuing short bonds may become optimal. Our numerical

experiments in this section were revealing of the conditions under which this may occur.

4.6 Additional experiments in the appendix.

Our baseline exercise assumed a positive value for ω2. As we discussed previously, our aim throughout this

section has been to investigate the key driving forces behind optimal portfolio decisions in our simple model,

and for this reason we set ω2 equal to the value implied by the quadratic approximation of the household

welfare objective function. In the appendix we extend our exercise to consider the case where ω2 = 0

assuming that government makes transfers to the private sector which fully compensate for the fluctuations

in the subsidies it gives to firms. Our findings are as follows: With ω2 = 0 the median loss function

is minimized when long term debt is approximately 100 percent of total debt. The optimal debt policy

continues to be driven by Hedging and bµL is now approximately equal to to bξL. Therefore, the Ramsey

policy can kill two birds with one stone, minimizing the impact of both of these structural shocks on the

intertemporal budget constraint. Under this optimal policy the welfare losses relative to the New Keynesian

model are minuscule.

5 Conclusion

This paper explored the impact of the debt maturity structure on inflation and output within the Fiscal Theory

of the Price Level. Leveraging the extensive literature on optimal Ramsey policy models, we relied on a

mixture of analytical solutions and numerical simulations to characterize the the optimal composition of

public debt in a New Keynesian framework, accounting for both demand and supply-side shocks.

Our findings yielded several intriguing conclusions: Firstly, the key factor behind the optimal maturity

structure is to hedge the government budget against supply side shocks. Secondly, at the optimum the trade-

off induced by the debt constraint is due to demand shocks only. Finally, targeting the optimal portfolio

significantly improves the trade-off between inflation and output. Thus optimal debt maturity management

is a useful policy margin to complement monetary policy in times where government debt is not backed by

surpluses.
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Online Appendix (Not for Publication).
A Additional figures

Figure 5: Welfare losses across portfolios with ω2 = 0

Notes: The figure displays the behaviour of welfare losses as a function of the share of long-term debt
in total debt issuances, assuming ω2 = 0. The results are obtained by simulating the model over a large
sample of parameters drawn from the prior distributions described in Table 1. The solid blue line depicts
the median value of the micro-founded loss function across all draws. The light blue area provides the
90% HPD interval.

B Derivations and Proofs

We now derive the first order conditions from the planner’s program. To ease the exposition we repeat the

constraint set of the planner:

ît = σ
Y

C
(EtỸt+1 − Ỹt) + Etπ̂t+1 + r̂nt

π̂t = κỸt + βEtπ̂t+1 + µ̂t

p̂L,t = −ît + βEtp̂L,t+1

together with the government budget constraint

bSpS(b̂S,t + p̂S,t) + bLpL(b̂L,t + p̂L,t) = −SŜt + bS(b̂S,t−1 − π̂t) + bL(1 + pL)(b̂L,t−1 − π̂t) + pLbLp̂L,t
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Figure 6: Welfare losses and Hedging variance with ω2 = 0
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Notes: The figure displays the behaviour of welfare losses components as a function of the share of long-term debt in total
debt issuances, assuming ω2 = 0. The displayed results depict the median losses over results obtained by simulating the
model over a large sample of parameters drawn from the prior distribution which is described in Table 1. The solid blue line
displays the loss function using the three structural shocks we consider in the paper. The dotted black line shows the Hedging
variance described in text, and the dashed red line depicts the loss function in a model version with surplus shocks only, as in
section 2.3.

As discussed in text, we can simplify the Ramsey program noting that ît and prices can be dropped. Then,

the set of sufficient constraints is:

π̂t = κỸt + βEtπ̂t+1 + µ̂t

bSβ

(
b̂S,t − σ

Y

C
(EtỸt+1 − Ỹt)− Etπ̂t+1 − r̂nt

)
+

bL
β

1− β

(
b̂L,t − σ

∑
j≥1

βj−1Y

C
(EtỸt+j − Ỹt+j−1)−

∑
j≥1

(β)j−1Etπ̂t+j −
∑
j≥1

(β)j−1r̂nt+j−1

)
=

(1 + ω1)GĜt + ω2Ỹt + bS

(
b̂S,t−1 − π̂t

)
+ bL

1

1− β

(
b̂L,t−1 − π̂t

)
− β

1− β
bL

(
σ
∑
j≥1

βj−1Y

C
(EtỸt+j − Ỹt+j−1) +

∑
j≥1

βj−1Etπ̂t+j +
∑
j≥1

βj−1r̂nt+j−1

)

To further simplify we can note that (with consols) the terms

bL
β

1− β

(
−σ
∑
j≥1

βj−1Y

C
(EtỸt+j − Ỹt+j−1)−

∑
j≥1

(β)j−1Etπ̂t+j −
∑
j≥1

(β)j−1r̂nt+j−1

)

cancel out from the LHS and the RHS of the constraint. We can therefore simplify and state the program as:
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max−1

2

∑
t≥0

βtEt

(
π̂2t + λY Ỹ

2
t

)

subject to π̂t = κỸt + βEtπ̂t+1 + µ̂t

bSβ

(
b̂S,t − σ

Y

C
(EtỸt+1 − Ỹt)− Etπ̂t+1 − r̂nt

)
+

bL
β

1− β
b̂L,t = (1 + ω1)GĜt + ω2Ỹt + bS

(
b̂S,t−1 − π̂t

)
+ bL

1

1− β

(
b̂L,t−1 − π̂t

)
Given multipliers ψπ,t for the Phillips curve constraint and ψgov,t for the budget constraint we can state

the optimality condition for inflation as:

−π̂t +∆ψπ,t + bS∆ψgov,t +
bL

1− β
ψgov,t = 0

The first order condition for output is given by:

−λY Ỹt − ψπ,tκ+ βbSσ
Y

C
ψgov,t − bSσ

Y

C
ψgov,t−1 − ω2ψgov,t = 0

To get the first equation in the format we show in text, add and subtract ψgov,t−1, ψgov,t−2, .... Then, we have

−π̂t +∆ψπ,t + bS∆ψgov,t +
bL

1− β

∑
j≥0

∆ψgov,t−j = 0

The second equation can be rearranged as follows: First, notice that (β − 1)bS = −S + bL. With this we

have:

−λY Ỹt − ψπ,tκ+ (bL − S)σ
Y

C
ψgov,t + bSσ

Y

C
∆ψgov,t − ω2ψgov,t = 0

and so adding and subtracting ψgov,t−1, ψgov,t−2, ... and rearranging we get:

−λY Ỹt − ψπ,tκ+ bLσ
Y

C

∑
j≥0

∆ψgov,t−j + bSσ
Y

C
∆ψgov,t − ω2ψgov,t − Sσ

Y

C
ψgov,t = 0

which is the FONC for output shown in text.

We now derive the solutions for inflation and output we showed in Section 2.3. Combining the FONC

for inflation and output we get:

−π̂t −
λY
κ

∆Ỹt + bS
σ

κ

Y

C
(∆ψgov,t −∆ψgov,t−1) + bL

σ

κ

Y

C

∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)−

−ω2

κ
∆ψgov,t − S

σ

κ

Y

C
∆ψgov,t + bS∆ψgov,t +

bL
1− β

∑
j≥0

∆ψgov,t−j = 0
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Then using:

Ỹt =
1

κ
(π̂t − βEtπ̂t+1 − µ̂t)

and

Ỹt−1 =
1

κ
(π̂t−1 − βEt−1π̂t − µ̂t−1)

we can write:

∆Ỹt =
1

κ
(π̂t − π̂t−1 − βEtπ̂t+1 + βπ̂t − β (π̂t − Et−1π̂t)︸ ︷︷ ︸

ζt

−∆µ̂t)

where ζt is a shock to the expectation of inflation (to be pinned down later). With this addition we can write

the trade-off equation as:

λY
κ2
βEtπ̂t+1 − (1 +

λY
κ2

+ β
λY
κ2

)π̂t +
λY
κ2
π̂t−1 =

−λY
κ2

∆µ̂t −
λY
κ2
βζt − bS

σ

κ

Y

C
(∆ψgov,t −∆ψgov,t−1)− bL

σ

κ

Y

C

∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)+

+
ω2

κ
∆ψgov,t + S

σ

κ

Y

C
∆ψgov,t − bS∆ψgov,t −

bL
1− β

∑
j≥0

∆ψgov,t−j = 0

or

Etπ̂t+1 − (
κ2

λY β
+

1

β
+ 1)π̂t +

1

β
π̂t−1 =

− 1

β
∆µ̂t − ζt −

κ2

λY β
bS
σ

κ

Y

C
(∆ψgov,t −∆ψgov,t−1)−

κ2

λY β
bL
σ

κ

Y

C

∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)+

+
κ2

λY β

ω2

κ
∆ψgov,t +

κ2

λY β
S
σ

κ

Y

C
∆ψgov,t − bS

κ2

λY β
∆ψgov,t −

κ2

λY β

bL
1− β

∑
j≥0

∆ψgov,t−j = 0

which is a second order difference equation with forcing terms.

The two roots of the homogeneous equation λ1, λ2 were derived in text. Letting λ2 denote the unstable

root, we can factor the homogeneous equation into:

Et(π̂t+1 − λ1π̂t)− λ2(π̂t − λ1π̂t−1) = 0

Define υt ≡ π̂t − λ1π̂t−1. We can solve the following difference equation forward:

1

λ2
Etυt+1 +

1

λ2

1

β
∆µ̂t +

1

λ2
ζt +

1

λ2

κ2

λY β
bS
σ

κ

Y

C
(∆ψgov,t −∆ψgov,t−1)+

+
1

λ2

κ2

λY β
bL
σ

κ

Y

C

∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)−
1

λ2

κ2

λY β

ω2

κ
∆ψgov,t −

1

λ2

κ2

λY β
S
σ

κ

Y

C
∆ψgov,t+

+
1

λ2
bS

κ2

λY β
∆ψgov,t +

1

λ2

κ2

λY β

bL
1− β

∑
j≥0

∆ψgov,t−j = υt
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The solution to the above equation, when we iterate forward and impose the boundary conditionEtlimj→
1

λj2
υj =

0 becomes:

υt =
1

βλ2

∑
l≥0

1

λl2
Et∆µ̂t+l +

1

λ2

∑
l≥0

1

λl2
Etζt+l +

1

λ2

κ2

λY β
bS
σ

κ

Y

C

∑
l≥0

1

λl2
Et(∆ψgov,t+l −∆ψgov,t−1+l)

+
1

λ2

κ2

λY β
bL
σ

κ

Y

C

∑
l≥0

1

λl2

∑
j≥0

Et(∆ψgov,t−j+l −∆ψgov,t−j−1+l)−
1

λ2

κ2

λY β

ω2

κ

∑
l≥0

1

λl2
Et∆ψgov,t+l+

− 1

λ2

κ2

λY β
S
σ

κ

Y

C

∑
l≥0

1

λl2
Et∆ψgov,t+l +

1

λ2
bS

κ2

λY β

∑
l≥0

1

λl2
Et∆ψgov,t+l +

1

λ2

κ2

λY β

bL
1− β

∑
l≥0

1

λl2

∑
j≥0

Et∆ψgov,t−j+l

We can solve each of the terms above analytically. We have:

1

βλ2

∑
l≥0

1

λl2
Et∆µ̂t+l =

1

βλ2
(µ̂t

1

1− ρµ
λ2

(1− 1

λ2
)− µ̂t−1)

1

λ2

∑
l≥0

1

λl2
Etζt+l =

1

λ2
ζt

which follows from the definition of ζt and applying the law of iterated expectations.

1

λ2

κ2

λY β

ωY
κ

∑
l≥0

1

λl2
Et∆ψgov,t+l =

1

λ2

κ2

λY β

ωY
κ

∆ψgov,t

which follows from the random walk property of the Lagrange multiplier.

1

λ2
bS

κ2

λY β

∑
l≥0

1

λl2
Et∆ψgov,t+l =

1

λ2
bS

κ2

λY β
∆ψgov,t

1

λ2

κ2

λY β
bS
σ

κ

Y

C

∑
l≥0

1

λl2
Et(∆ψgov,t+l −∆ψgov,t−1+l) =

1

λ2

κ2

λY β
bS
σ

κ

Y

C
(1− 1

λ2
)∆ψgov,t −

1

λ2

κ2

λY β
bS
σ

κ

Y

C
∆ψgov,t−1

1

λ2

κ2

λY β

bL
1− β

∑
l≥0

1

λl2

∑
j≥0

Et∆ψgov,t−j+l =
1

λ2

κ2

λY β

bL
1− β

∑
j≥0

∑
l≥0

1

λl2
Et∆ψgov,t−j+l →

→ 1

λ2

κ2

λY β

bL
1− β

∑
j≥0

j∑
l=0

1

λl2
∆ψgov,t−j+l =

1

λ2

κ2

λY β

bL
1− β

(
1

1− 1
λ2

)
∑
j≥0

∆ψgov,t−j

and finally

1

λ2

κ2

λY β
bL
σ

κ

Y

C

∑
l≥0

1

λl2

∑
j≥0

Et(∆ψgov,t−j+l −∆ψgov,t−j−1+l) =

1

λ2

κ2

λY β
bL
σ

κ

Y

C
(

1

1− 1
λ2

)
∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)−
1

λ22

κ2

λY β
bL
σ

κ

Y

C
(

1

1− 1
λ2

)∆ψgov,t
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Bringing together the resulting expressions we obtain:

υt =
1

βλ2
(µ̂t

1

1− ρµ
λ2

(1− 1

λ2
)− µ̂t−1) +

1

λ2
ζt −

1

λ2

κ2

λY β

ω2

κ
∆ψgov,t −

1

λ2

κ2

λY β
S
σ

κ

Y

C
∆ψgov,t +

1

λ2
bS

κ2

λY β
∆ψgov,t+

+
1

λ2

κ2

λY β
bS
σ

κ

Y

C
(1− 1

λ2
)∆ψgov,t −

1

λ2

κ2

λY β
bS
σ

κ

Y

C
∆ψgov,t−1 +

1

λ2

κ2

λY β

bL
1− β

(
1

1− 1
λ2

)
∑
j≥0

∆ψgov,t−j+

1

λ2

κ2

λY β
bL
σ

κ

Y

C
(

1

1− 1
λ2

)
∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)−
1

λ22

κ2

λY β
bL
σ

κ

Y

C
(

1

1− 1
λ2

)∆ψgov,t

To simplify these expressions we can write:

υt =
1

βλ2
(µ̂t

1

1− ρµ
λ2

(1− 1

λ2
)− µ̂t−1) +

1

λ2
ζt + ã1∆ψgov,t − ã2∆ψgov,t−1 + ã3

∑
j≥0

∆ψgov,t−j+

+ã4
∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)

for appropriately defined coefficients:

ã1 =
1

λ2

κ2

λY β

[
−ω2

κ
− S

σ

κ

Y

C
+ bS + bS

σ

κ

Y

C
(1− 1

λ2
)− 1

λ2
bL
σ

κ

Y

C
(

1

1− 1
λ2

)

]
ã2 =

1

λ2

κ2

λY β
bS
σ

κ

Y

C
, ã3 =

1

λ2

κ2

λY β

bL
1− β

(
1

1− 1
λ2

) ã4 =
1

λ2

κ2

λY β
bL
σ

κ

Y

C
(

1

1− 1
λ2

)

Omitting the shocks for simplicity (we will introduce them later on) we can write the expected date t

inflation as:

Et−1π̂t = λ1π̂t−1 − ã2∆ψgov,t−1 + ã3
∑
j≥1

δj∆ψgov,t−j ++ã4
∑
j≥1

δj∆ψgov,t−j − ã4
∑
j≥0

∆ψgov,t−j−1

and so

ζ̂t ≡ π̂t − Et−1π̂t =
1

1− λ−1
2

(ã1 + ã3 + ã4)∆ψgov,t

Plugging this result, we obtain the following expression for inflation:

π̂t = λ1π̂t−1 +
1

λ2

1

1− λ−1
2

(ã1 + ã3 + ã4)∆ψgov,t + ã1∆ψgov,t − ã2∆ψgov,t−1 + ã3
∑
j≥0

∆ψgov,t−j+

+ã4
∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1) =

λ1π̂t−1 + a1∆ψgov,t − a2∆ψgov,t−1 + a3
∑
j≥0

∆ψgov,t−j (28)

27 Coefficients a2 and a3 are denoted in text ν2 and ν3 respectively.
27Clearly, a4

∑
j≥0(∆ψgov,t−j −∆ψgov,t−j−1) = a4∆ψgov,t.
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Moreover, using the above formulae and with a bit more algebra we can show that

ν1 =
κ2

λY β

1

λ2

1

1− λ−1
2

[
−ω2

κ
+ bS + bS

σ

κ

Y

C
(β − 1

λ2
) +

1

λ2

bL
1− β

(
1

1− 1
λ2

)

]

Now consider bringing back the cost-push shocks, assuming for simplicity that ∆ψgov,t = 0 for all t.

Then,

υt =
1

βλ2
(µ̂t

1

1− ρµ
λ2

(1− 1

λ2
)− µ̂t−1) +

1

λ2
ζt

and from this, it becomes easy to derive:

π̂t = λ1π̂t−1 +
1

βλ2

1

1− ρµ
λ2

µ̂t −
1

βλ2

1

1− ρµ
λ2

µ̂t−1 = λ1π̂t−1 + θ1∆µ̂t (29)

Combining the (28) and (29) we obtain the formula showed in text.

Given the analytical results for inflation it is not difficult to find the analogous expression for the output

gap.

κỸt = π̂t − βEtπ̂t+1 − µt =

λ1κỸt−1 − βλ1ζt − µt + λ1µt−1 + θ1∆µt − βθ1(ρµ − 1)µt

κỸt = λ1κỸt−1 − βλ1ζt + λ1µ̂t−1 + (θ1∆µ̂t +O(∆ψgov,t, t))− βEt(θ1∆µ̂t+1 +O(∆ψgov,t+1, t+ 1))− µ̂t

κỸt(1− λ1L) = (θ1∆µ̂t +O(∆ψgov,t, t))− βEt(θ1∆µ̂t+1 +O(∆ψgov,t+1, t+ 1)) + λ1µ̂t−1 − µ̂t

−βλ1θ1µ̂t + βλ1ρµθ1µ̂t−1 − βλ1
1

1− λ−1
2

(ã1 + ã3 + ã4)∆ψgov,t

→ Ỹt = λ1Ỹt−1 +
1

κ

[
1

βλ2

(1 + β − β(λ1 + λ2))

1− ρµ
λ2

µ̂t + (ã1 + βa2)∆ψgov,t − a2∆ψgov,t−1+

+a3(1− β)
∑
j≥0

∆ψgov,t−j + a4
∑
j≥0

(∆ψgov,t−j −∆ψgov,t−j−1)

]

28

Using the above expressions and rearranging we can obtain:

ν4 =
1

λ2

κ2

λY β

[
−ω2

κ
(bL − S)

σ

κ

Y

C
+ bS + bS

σ

κ

Y

C
(β − 1

λ2
)bS

σ

κ

Y

C

]
28The terms µ̂t−1 drop since

−θ1 + βλ1ρµθ1 + λ1 =
1

βλ2

1

1− ρµ/λ2
(βλ1ρµ − 1) + λ1 =

1

βλ2

1

1− ρµ/λ2
(ρµ/λ2 − 1) + λ1 = λ1 −

1

βλ2
= 0

Then the terms µ̂t are

(−βλ1θ1 − 1 + θ1 − βθ1(ρµ − 1)) = θ1(1 + β)− 1− βλ1θ1 − βρµθ1 =

θ1(1 + β) + θ1(−βλ2 − βλ1) = θ1(1 + β)− βθ1(λ2 + λ1) = θ1[1 + β − β(λ2 + λ1)]
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B.1 Proof of Proposition 1.

The analytical derivations of this paragraph provided the proof. ■

B.2 Deriving the Optimal Portfolios.

Based on these expressions for output and inflation we can find the optimal government portfolios. To do so,

we need to firstly use the intertemporal budget constraint and express ∆ψgov,t as a function of the shocks.

The intertemporal budget is:

Et
∑
j≥0

βj
(
− ω1Ĝt+j − ω2Ỹt+j − σ

Y

C
S(Ỹt+j − Ỹt) + S(

−r̂nt −r̂nt+1−...−r̂nt+j︷ ︸︸ ︷
Gϕ

Y + ϕ
σC

(Ĝt+j − Ĝt) + ξ̂t+j − ξ̂t)

)
=

bS(b̂S,t−1 − π̂t) +
1

1− β
bL(b̂L,t−1 − π̂t)

+bLβEt
∑
j≥1

βj−1

[
−σY

C
(Ỹt+j − Ỹt)− r̂nt − r̂nt+1 − ...− r̂nt+j − π̂t+1 − ...− π̂t+j

]

To determine ∆ψgov,t we need to focus on period t innovations to this constraint. In other words terms

that involve lags of state variables of the model (including terms such as ∆ψgov,t−1, ∆ψgov,t−2 etc) can be

dropped from the calculations. Keeping this in mind we can calculate each of the components of the LHS

and the RHS of the intertemporal constraint. We have:

−ω1Et
∑
j≥0

βjĜt+j = −ω1
1

1− βρG
Ĝt = −ω1

1

1− βρG
[ρGĜt−1 + uG,t] = − 1

1− βρG
uG,t

when Ĝt−1 has been accounted for.

Et
∑
j≥0

βj
(
− (ω2 + Sσ

Y

C
)Ỹt+j + Sσ

Y

C
Ỹt

)
=

Et
∑
j≥0

βj
(
− (ω2 + Sσ

Y

C
)
1

κ
[π̂t+j − βπ̂t+j+1 − µ̂t+j ] + Sσ

Y

C
Ỹt

)
=

−(ω2 + Sσ
Y

C
)
1

κ
π̂t + (ω2 + Sσ

Y

C
)
1

κ

µ̂t
1− βρµ

+ S
σ

κ(1− β)

Y

C
[π̂t − βEtπ̂t+1 − µ̂t] =

−(ω2 + Sσ
Y

C
)
1

κ
π̂t + S

σ

κ(1− β)

Y

C
[π̂t − βEtπ̂t+1] + (ω2 + Sσ

Y

C

β(ρµ − 1)

(1− β)
)
1

κ

uµ,t
1− βρµ

SEt
∑
j≥0

βj
( −r̂nt −r̂nt+1−...−r̂nt+j︷ ︸︸ ︷

Gϕ

Y + ϕ
σC

(Ĝt+j − Ĝt) + ξ̂t+j − ξ̂t

)
= S

Gϕ

Y + ϕ
σC

Ĝt
β(ρG − 1)

(1− βρG)(1− β)
+

+S
β(ρξ − 1)

(1− βρξ)(1− β)
ξ̂t = S

Gϕ

Y + ϕ
σC

β(ρG − 1)

(1− βρG)(1− β)
uG,t + S

β(ρξ − 1)

(1− βρξ)(1− β)
uξ,t

and the terms of the LHS (the present value of surpluses) of the intertemporal constraint.
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On the RHS of the constraint we have:

−Et
∑
j≥1

βj−1(π̂t+1 + π̂t+2 + ...+ π̂t+j) = −Et
∑
j≥1

βj−1
j∑

k=1

(π̂t+k)

To simplify this term we need to figure out the expectationEtπ̂t+k using the previous formulae. It is possible

to write:

Etπ̂t+k = λk1π̂t − a2λ
k−1
1 ∆ψgov,t + a3

1− λk1
1− λ1

∆ψgov,t + θ1(ρµ − 1)
ρkµ − λk1
ρµ − λ1

µ̂t

where θ1 = 1
βλ2

1
1− ρµ

λ2

Note that to arrive to this formula we only kept the terms ∆ψgov,t since these are the

terms that the intertemporal constraint will pin down.

Then

−Et
∑
j≥1

βj−1
j∑

k=1

(π̂t+k) = −
[

λ1
(1− β)(1− βλ1)

π̂t −
a2

(1− β)(1− βλ1)
∆ψgov,t

+a3
1

(1− λ1)(1− β)2
∆ψgov,t + (θ1

ρµ − 1

(ρµ − λ1)(1− β)
)(

ρµ
1− β ρµ

− λ1
1− βλ1

)µ̂t

]

Putting all of this together, we get the following expression for the budget constraint:

− ω1

1− βρG
uG,t − (ω2 + Sσ

Y

C
)
1

κ
π̂t + S

σ

κ(1− β)

Y

C
[π̂t − βEtπ̂t+1] + (ω2 + Sσ

Y

C

β(ρµ − 1)

(1− β)
)
1

κ

uµ,t
1− βρµ

+S
Gϕ

Y + ϕ
σC

β(ρG − 1)

(1− βρG)(1− β)
uG,t + S

β(ρξ − 1)

(1− βρξ)(1− β)
uξ,t =

= −bS π̂t −
1

1− β
bLπ̂t + βbL

[
−σY

C

1

κ
Etπ̂t+1 +

σ

κ(1− β)

Y

C
[π̂t − βEtπ̂t+1] + σ

Y

C

(ρµ − 1)

(1− β)
)
1

κ

uµ,t
1− βρµ

+

+
Gϕ

Y + ϕ
σC

(ρG − 1)

(1− βρG)(1− β)
uG,t +

(ρξ − 1)

(1− βρξ)(1− β)
uξ,t

]
−βbL

[
λ1

(1− β)(1− βλ1)
π̂t −

a2
(1− β)(1− βλ1)

∆ψgov,t

+a3
1

(1− β)2
1

1− βλ1
∆ψgov,t + (θ1

ρµ − 1

(ρµ − λ1)(1− β)
)(

ρµ
1− βρµ

− λ1
1− βλ1

)uµ,t

]
(30)

B.3 Proof of Proposition 2

From (30) we can derive the optimal portfolios corresponding to each of the shocks. These are objects

bGL , b
ξ
L, b

µ
L we showed in text. Recall that these portfolios can fully absorb the shocks and so we can set

∆ψgov,t = 0.

Consider first the case of spending shocks only. It is not difficult to show that when ∆ψgov,t = 0,

inflation is 0 at all times and output is always equal to the natural level. From (30) we get:

− ω1

1− βρG
uG,t + S

Gϕ

Y + ϕ
σC

β(ρG − 1)

(1− βρG)(1− β)
uG,t = βbL

Gϕ

Y + ϕ
σC

(ρG − 1)

(1− βρG)(1− β)
uG,t →
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bGL = S +
ω1

1− ρG

Y + ϕ
σC

ϕ

1− β

β

and so bGS =
S−bGL
1−β = − 1

1−ρG
Y+ϕ

σ
C

ϕ
1
β < 0. The optimal portfolio features long term debt and short term

savings.

Next consider bξL.

βS
(ρξ − 1)

(1− βρξ)(1− β)
uξ,t = βbL

(ρξ − 1)

(1− βρξ)(1− β)
uξ,t

and so it is easy to see that bξL = S, bξS = 0 is the solution.

Next consider the optimal portfolio for cost-push shocks. When ∆ψgov,t = 0 we can write for one off

cost-push shocks:

π̂t = θ1uµ,t

Eπ̂t+1 = θ1λ1 + θ1(ρµ − 1)uµ,t

π̂t − βEπ̂t+1 = θ1(1− βλ1 − β(ρµ − 1))uµ,t

The terms involving the shock cancel out in the intertemporal budget constraint when:

−(ω2 + Sσ
Y

C
)
1

κ
θ1 + S

σ

κ(1− β)

Y

C
[θ1(1− βλ1 − β(ρµ − 1))] + (ω2 + Sσ

Y

C

β(ρµ − 1)

(1− β)
)
1

κ

1

1− βρµ

= − S

1− β
θ1 + βbL

[
−σY

C

1

κ
(θ1λ1 + θ1(ρµ − 1)) +

σ

κ(1− β)

Y

C
[θ1(1− βλ1 − β(ρµ − 1))]

+σ
Y

C

(ρµ − 1)

(1− β)
)
1

κ

1

1− βρµ

]
− βbL

[
λ1

(1− β)(1− βλ1)
θ1 + (θ1

ρµ − 1

(ρµ − λ1)(1− β)
)(

ρµ
1− βρµ

− λ1
1− βλ1

)

]
and rearranging, we obtain

ω2

κ
(

1

1− βρµ
− θ1) + S

βσ

κ(1− β)

Y

C

[
(θ1 −

1

1− βρµ
)(1− ρµ) + θ1(1− λ1)

]
+

S

1− β
θ1

= σ
Y

C

β

κ(1− β)
bµL

[
θ1(1− λ1) + (1− ρµ)(θ1 −

1

1− βρµ
)

]
− θ1β

bµL
(1− β)(1− βλ1)

[
λ1 + (

ρµ − 1

(1− βρµ)
)

]
the solution to which gives us the expression for bµL shown in text.

Now consider the limiting cases λY = 0 and λY = ∞. In the first case λ1 = θ1 = 0. We therefore have:

bµL = S − ω2

(1− ρµ)

(1− β)

β

C

Y σ

Second, in the case of only output smoothing we have θ1 = 1
1−βρµ and λ1 = 1 and so

bµL = −S (1− βρµ)

βρµ
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B.4 Proof of Proposition 3

We now derive analytically the term ∆ψgov,t as a function of the shocks. To do so we utilize the impulse

response function: We make use of the property that ∆ψgov,t is just a function of the date t innovations to

the economy and therefore all lagged state variables of the model (lags of shocks, of ∆ψgov,t and of the debt

levels) will not matter for this solution.

Equation (30) expresses debt solvency as a function of the shocks and of current and future inflation.

The solution for ∆ψgov,t can be found from this equation. Writing current and future inflation as functions

of ∆ψgov,t (omitting variables which are predetermined in t) we get:

π̂t =

≡a5︷ ︸︸ ︷
(a1 + a3 + a4)∆ψgov,t + θ1uµ,t

Eπ̂t+1 = λ1π̂t + (a3 − a2)∆ψgov,t + θ1(ρµ − 1)uµ,t =

=

[
a5λ1 + (a3 − a2)

]
∆ψgov,t + θ1

[
λ1 + (ρµ − 1)

]
uµ,t

π̂t − βEπ̂t+1 =

[
(1− βλ1)a5 + β(a2 − a3)

]
∆ψgov,t + θ1

[
1− βλ1 + β(1− ρµ)

]
uµ,t

Next, we substitute the above expressions in the intertemporal budget (30) to solve for ∆ψgov,t. Using

the results of the previous paragraph to simplify the budget constraint we write it as:[
bL − bGL

]
χGuG,t +

[
bL − bξL

]
χξuξ,t +

[
bL − bµL

]
χµuµ,t

−(ω2 + Sσ
Y

C
)
1

κ
a5∆ψgov,t + S

σ

κ(1− β)

Y

C

[
(1− βλ1)a5 + β(a2 − a3)

]
= − S

1− β
a5∆ψgov,t

+βbL

[
−σY

C

1

κ

(
a5λ1 + (a3 − a2)

)
∆ψgov,t +

σ

κ(1− β)

Y

C

(
(1− βλ1)a5 + β(a2 − a3)

)]
−βbL

[
λ1

(1− β)(1− βλ1)
a5∆ψgov,t −

a2
(1− β)(1− βλ1)

∆ψgov,t + a3
1

(1− β)2
1

1− βλ1
∆ψgov,t

]
where

χG ≡ Gϕ

Y + ϕ
σC

β(1− ρG)

(1− βρG)(1− β)

χξ ≡
β(1− ρξ)

(1− βρξ)(1− β)

χµ ≡ σ
Y

C

β

κ(1− β)

[
θ1(1− λ1) + (1− ρµ)(θ1 −

1

1− βρµ
)

]
− θ1β

1

(1− β)(1− βλ1)

[
λ1 + (

ρµ − 1

(1− βρµ)
)

]
The above can be rearranged as follows[

bL − bGL

]
χGuG,t +

[
bL − bξL

]
χξuξ,t +

[
bL − bµL

]
χµuµ,t

= (
ω2

κ
− S

1− β
)a5∆ψgov,t + β(bL − S)

σ

κ(1− β)

Y

C

[
(1− λ1)a5 + (a2 − a3)

]
− βbL
(1− β)(1− βλ1)

[
λ1a5∆ψgov,t − (a2 −

a3
1− β

)∆ψgov,t

]
(31)

(31) can be solved to obtain ∆ψgov,t as a function of the shocks.
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B.5 Proof of Proposition 4

We now simplify assuming. λY = 0. Under this assumption we can show that that λ1 = 0, a1 = −ω2
κ −

S σκ
Y
C + bS + bS

σ
κ
Y
C , a2 = bS

σY
κC , a3 = bL

1−β and a4 = bL
σY
κC and a5 = a1 + a3 + a4 = −ω2

κ − β(bL −
S) σ

κ(1−β)
Y
C + S

1−β
Using these results equation (31) can be written as:[

bL − bGL

]
χGuG,t +

[
bL − bξL

]
χξuξ,t +

[
bL − bµL

]
χµuµ,t(

ω2

κ
− S

1− β
+ β(bL − S)

σ

κ(1− β)

Y

C

)
︸ ︷︷ ︸

−a5

a5∆ψgov,t

+

(
β(bL − S)

σ

κ(1− β)

Y

C
+

βbL
(1− β)

)
︸ ︷︷ ︸

−β(a2−a3)

(a2 − a3)∆ψgov,t − a3
β2bL

(1− β)2

→ ∆ψgov,t =

[
bGL − bL

]
χGuG,t +

[
bξL − bL

]
χξuξ,t +

[
bµL − bL

]
χµuµ,t(

ω2
κ − S

1−β + β(bL − S) σ
κ(1−β)

Y
C

)2

+ β

(
(bL − S) σ

κ(1−β)
Y
C + bL

(1−β)

)2

+
β2b2L

(1−β)3

gives us a closed form expression for the change in the multiplier as a function of the shocks. Moreover,

assuming λY = 0 means that inflation follows:

π̂t = a5∆ψgov,t + (a3 − a2)∆ψgov,t−1 + a3

t∑
j=2

∆ψgov,t−j

The assumption we made to derive this solution is that the economy does not get hit by any shock until period

0. Thus, we set ∆ψgov,−1 = ∆ψgov,−2 = ... = 0. This is useful to derive the objective function.

Using this formula, the variance of inflation in t can be written as:

σ2
π̂,t

= a25σ
2
∆ψgov

It≥0 + (a2 − a3)
2σ2∆ψgov

It≥1 + a23σ
2
∆ψgov

(t− 1)It≥2

where the function I indicates when each of the terms on the RHS becomes relevant.

The welfare function is:

−
∞∑
t=0

βtσ2
π̂,t

= − 1

1− β

(
a25 + β(a2 − a3)

2

)
σ2∆ψgov

− a23
β2

(1− β)2
σ2∆ψgov

where

σ2∆ψgov
=

[
bGL − bL

]2
χ2
Gσ

2
G +

[
bξL − bL

]2
χ2
ξσ

2
ξ +

[
bµL − bL

]2
χ2
µσ

2
µ(

a25 + β(a2 − a3)2 +
β2

1−βa
2
3

)2
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We can simplify this expression to:

−
∞∑
t=0

βtσ2
π̂,t

= − 1

1− β

[
bGL − bL

]2
χ2
Gσ

2
G +

[
bξL − bL

]2
χ2
ξσ

2
ξ +

[
bµL − bL

]2
χ2
µσ

2
µ

a25 + β(a2 − a3)2 +
β2

1−βa
2
3

=

− 1

1− β

[
bGL − bL

]2
χ2
Gσ

2
G +

[
bξL − bL

]2
χ2
ξσ

2
ξ +

[
bµL − bL

]2
χ2
µσ

2
µ(

ω2
κ − S

1−β + β(bL − S) σ
κ(1−β)

Y
C

)2

+ β

(
(bL − S) σ

κ(1−β)
Y
C + bL

(1−β)

)2

+
β2b2L

(1−β)3

For the notation used in Proposition 4 we clearly have:

f(bL) ≡
[(

ω2

κ
− S

1− β
+ (bL − S)

βω̃

(1− β)

)2

+ β

(
(bL − S)

ω̃

(1− β)
+

bL
(1− β)

)2

+
β2b2L

(1− β)3

]−1

B.6 Analytics of Section 2.4

We now derive the solutions for optimal inflation and output shown in Section 2.3 of the main text. Consider

first the simple case where all debt is short term debt and σ = 0. We then have:

π̂t = λ1π̂t−1 + (
1

λ2

1

1− λ−1
2

+ 1)ã1∆ψgov,t

where α1 = κ2

λ2λY β
bS . Moreover, it is easy to check that ζt = 1

1−λ−1
2

ã1∆ψgov,t With this we can derive the

process of the output gap as:

Ỹt =
1

κ
(π̂t − βEtπ̂t+1) =

1

κ
(λ1(π̂t−1 − Et−1βπ̂t) + (

1

λ2

1

1− λ−1
2

+ 1)ã1∆ψgov,t − βλ1ζt)

= λ1Ỹt−1 +
1

κ
(
1

λ2

1

1− λ−1
2

+ 1)ã1∆ψgov,t −
βλ1
κ

1

1− λ−1
2

ã1∆ψgov,t

= λ1Ỹt−1 +
1

κ

1

λ2

1

1− λ−1
2

(λ2 − 1)ã1∆ψgov,t

With this we can characterize the variance of output and the variance of inflation as functions of λY given an

analytical expression for ∆ψgov,t. Assume an i.i.d shock to the present value of the government’s surplus. In

this simple model we have:

Shockt = −bS π̂t = −bS(
1

λ2

1

1− λ−1
2

+ 1)ã1∆ψgov,t → ∆ψgov,t = −Shockt
1

bS(
1
λ2

1
1−λ−1

2

+ 1)ã1

Therefore we get:

π̂t = λ1π̂t−1 −
1

bS
Shockt

Ỹt = λ1Ỹt−1 −
1

κ
Shockt(1− λ−1

2 )
1

bS
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which is the expression shown in text.

Now consider the case σ > 0 but keeping debt short-term. We get:

ã1 =
1

λ2

κ2

λY β

[
bS + bS

σ

κ

Y

C
(1− 1

λ2
)

]
ã2 =

1

λ2

κ2

λY β
bS
σ

κ

Y

C
,

and so inflation is:

π̂t = λ1π̂t−1 +
1

1− λ−1
2

ã1∆ψgov,t − ã2∆ψgov,t−1

Using this result aggregate output becomes:

Ỹt =
1

κ
(λ1(π̂t−1 − Et−1βπ̂t) + (

1

λ2

1

1− λ−1
2

+ 1)ã1∆ψgov,t − ã2∆ψgov,t−1 + βã2∆ψgov,t − βλ1ζt)

= λ1Ỹt−1 +
1

κ
(ã1 + βã2)∆ψgov,t −

ã2
κ
∆ψgov,t−1

We can use the intertemporal budget to recover the multiplier. We have:

Shockt −
∑
j≥0

βjEtS
Y

C
σ(Ỹt+j − Ỹt) = −bS π̂t →

Shockt − S
Y

C
σ
1

κ
(

1

1− λ−1
2

ã1∆ψgov,t −
1

1−λ−1
2

ã1∆ψgov,t + (βã2 − βλ1
1

1−λ−1
2

ã1)∆ψgov,t

1− β
)

= −bS
1

1− λ−1
2

ã1∆ψgov,t →

∆ψgov,t = − Shockt[
bS

1
1−λ−1

2

ã1 + S YCσ
β

κ(1−β)(
1

1−λ−1
2

ã1(1− λ1) + ã2)

]
Substituting the coefficients ai and combining the above expressions it is possible to derive the solution

for inflation and output shown in text.

Lastly, consider the model with σ = 0 but all debt is long term. We have:

ã3 =
1

λ2

κ2

λY β

bL
1− β

(
1

1− 1
λ2

)

and

π̂t = λ1π̂t−1 +
1

λ2 − 1
ã3∆ψgov,t + ã3

∑
j≥0

∆ψgov,t−j

Ỹt =
1

κ
(λ1(π̂t−1 − Et−1βπ̂t) +

1

λ2

1

1− λ−1
2

ã3∆ψgov,t + ã3(1− β)
∑
j≥0

∆ψgov,t−j − βλ1ζt)

= λ1Ỹt−1 +
1

κ
(
1

λ2

1− βλ1

1 − λ2
−1 ã3∆ψgov,t− βλ1ã3∆ψgov,t+ ã3(1− β)

∑
j≥0

∆ψgov,t−j)
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The intertemporal constraint can be written as:

Shockt = −bL
∑
j≥0

βj
j∑

k=0

π̂t+k

where

π̂t+k = λk+1
1 π̂t−1 +

λk1
λ2

1

1− λ−1
2

ã3∆ψgov,t + ã3
1− λk+1

1

1− λ1
∆ψgov,t

We thus have:

j∑
k=0

π̂t+k =

j∑
k=0

λk1
λ2

1

1− λ−1
2

ã3∆ψgov,t +

j∑
k=0

ã3
1− λk+1

1

1− λ1
∆ψgov,t =

1− λj+1
1

(1− λ1)
ã3∆ψgov,t[

1

λ2 − 1
− λ1

(1− λ1)
] + ã3

(j + 1)

(1− λ1)
∆ψgov,t

and so

−bL
∑
j≥0

βj
j∑

k=0

π̂t+k = −bL∆ψgov,tã3
∑
j≥0

βj
(
1− λj+1

1

(1− λ1)
[

1

λ2 − 1
− λ1

(1− λ1)
] +

(j + 1)

(1− λ1)

)

= −bL∆ψgov,tã3
(
[

1

λ2 − 1
− λ1

(1− λ1)
][

1

(1− β)(1− βλ1)
] +

1

(1− λ1)(1− β)2

)
= −bL∆ψgov,tã3

(
[

1− λ1λ2
(1− λ1)(λ2 − 1)

][
1

(1− β)(1− βλ1)
] +

1

(1− λ1)(1− β)2

)
To simplify focus on the case where λY = 0 . Then

Shockt = −
b2L

(1− β)3
∆ψgov,t → ∆ψgov,t = −(1− β)3

b2L
Shockt

We thus have:

π̂t = −(1− β)2

bL

∑
j

Shockt−j

and so

Yt = −1

κ

(1− β)3

bL
Shockt

−bL
∑
j≥0

βj
j∑

k=0

π̂t+k = −bL
1

1− β

1

1− λ1
[

βλ1
(1− βλ1)2

+
1

1− β
]∆ψgov,t

→ ∆ψgov,t = − 1

bL

(1− β)(1− λ1)

[ βλ1
(1−βλ1)2 + 1

1−β ]
Shockt
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π̂t = λ1π̂t−1 +
1

λ2 − 1
ã3∆ψgov,t + ã3

∑
j≥0

∆ψgov,t−j

■

C The non-linear model/ Deriving the welfare loss function.

C.1 Households, Firms and Government

C.1.1 Households Households in our model maximize the following objective function

E0

∞∑
t=0

βtξt

(
C1−σ
t

1− σ
− χ

h1+ϕt

1 + ϕ

)

subject to a standard budget constraint which equates the consumption and income and the values of short

term and long term bonds purchased by households, to the total net income (from salaries, bonds, and

dividends). This program is standard and for brevity we simply state here the optimality conditions for

bonds and consumption (the Euler equations):

R−1
t = βEtdt+1,t

[
Cσt

πt+1Cσt+1

]

PL,t = βEt

[
Cσt (1 + PL,t+1)

πt+1Cσt+1

]

where dt+1,t ≡ ξt+1/ξt

C.1.2 Firms As discussed in text, final output in the model is produced by a continuum of monopolis-

tically competitive producer setting prices subject to adjustments costs as in Rotemberg (1982). The profit

maximization problem of the generic firm j is given by :

max
Pt(j)

Et

∞∑
s=0

Qt,t+s

(Pt+s(j)
Pt+s

Yt+s(j)− exp(µt)
MCt+s(j)(1− s)

Pt+s
Yt+s(j)−ACt+s(j)

)
s.t. Yt+s(j) =

(Pt+s(j)
Pt+s

)η
Yt+s

ACt+s(j) =
θ

2

( Pt+s(j)

Pt+s−1(j)
− π

)2
Yt+s

where s is a steady state employment subsidy. In a symmetric equilibrium (all firms charge the same price )

the (non-linear) New-Keynesian Phillips curve is:

(πt − π)πt =
η

θ

(1 + η

η
− eµtwt(1− s)

)
+ βEtdt+1;t

Cσt
Cσt+1

Yt+1

Yt
(πt+1 − π)πt+1.

C.1.3 Government and resource constraint The government issues debt to finance a random stream of

expenditures denoted by Gt. Moreover, it levies constant lump sum taxes (T ) and subsidizes monopolistic
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producers (s denotes the subsidy rate). The non-linear government budget constraint is:

bt−1,S

πt
+

(
1 + pL,t
πt

)
bL,t−1 =

bS,t
Rt

+ pL,tbŁ,t + Tt −Gt − swtYt

where bS , bL denote the real values of the short and long debt respectively.

Adding the budget constraint of the government and the analogous object for households we can obtain

the economy wide resource constraint as:

Ct +Gt = Yt

(
1− θ

2

(
πt − π

)2)
(32)

C.1.4 Efficient steady state The first best allocation is given by solving

E0

∞∑
t=0

βtξt

(
C1−σ
t

1− σ
− χ

h1+ϕt

1 + ϕ

)

such that (32) So, at the first best, we have

C−σ
t = χY ϕ

t

At steady state, we have

w =
1 + η

η(1− s)
s = −1

η
R = β−1 pL =

β

1− β

T =
(
bS +

bL
1− β

)
(1− β) +G+ swY

C.2 The micro-founded function

Second order approximation:

U ≈ c−σ
[
CĈt +

1

2
(1− σ)CĈ2

t − Y Ŷt −
1

2
(1 + ϕ)Y Ŷ 2

t

]
+ tip (33)

RC ≈ CĈt +
1

2
CĈ2

t − Y Ŷt −
1

2
Y Ŷ 2

t +
1

2
θY π̂2t + tip (34)

Combining the previous equations we get:

U ≈ −1

2
c−σ
[
− σCĈ2

t + ϕY Ŷ 2
t + θY π̂2t

]
+ tip (35)

Using Ĉ2
t ≈

(
Y
C

)2
Ŷ 2
t − 2GY

C2 ŶtĜt + tip = −Y
C
ϕ
σ Ŷ

2
t +

(
Y
C

)2
(1 + ϕC

σY )(Ŷt − Ŷ n
t )

2 + tip, we get

U ≈ −1

2
c−σY

[(
σ
Y

C
+ ϕ

)
(Ŷt − Ŷ n

t )
2 + θπ̂2t

]
+ tip (36)

which, after normalizing gives

−1

2
(λY (Ŷt − Ŷ n

t )
2 + π̂2t ) (37)

with λY ≡
(
σ YC + ϕ

)
θ−1
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